【題目】作圖:
(1)如圖甲,以點O為中心,把點P順時針旋轉(zhuǎn)45°;
(2)如圖乙,以點O為中心,把線段AB逆時針旋轉(zhuǎn)90°;
(3)如圖丙,以點O為中心,把△ABC順時針旋轉(zhuǎn)120°;
(4)如圖丁,以點B為中心,把△ABC旋轉(zhuǎn)180°.
【答案】(1)作圖見解析;(2)作圖見解析;(3)作圖見解析;(4)作圖見解析.
【解析】試題分析:(1)連接OP,將OP順時針旋轉(zhuǎn)45°,即可得到P的對應(yīng)點P′,
(2)根據(jù)旋轉(zhuǎn)角為90°,旋轉(zhuǎn)方向是逆時針,旋轉(zhuǎn)中心為O可找出旋轉(zhuǎn)后各點的對應(yīng)點,然后順次連接即可,
(3)根據(jù)旋轉(zhuǎn)角為120°,旋轉(zhuǎn)方向是順時針,旋轉(zhuǎn)中心為O可找出旋轉(zhuǎn)后各點的對應(yīng)點,然后順次連接即可,
(4) 根據(jù)旋轉(zhuǎn)角為180°,旋轉(zhuǎn)中心為B可找出旋轉(zhuǎn)后各點的對應(yīng)點,然后順次連接即可.
試題解析:
(1)如圖甲,點P′為所求,
(2)如圖乙,線段A′B′為所求,
(3)如圖丙,△A′B′C′為所求,
(4)如圖丁,△A′BC′為所求.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點、點表示的數(shù)為、,則、兩點之間的距離;線段的中點表示的數(shù)為.已知數(shù)軸上有、兩點,分別表示的數(shù)為和,點以每秒個單位的速度沿數(shù)軸向右勻速運動,點以每秒個單位向左勻速運動.設(shè)運動時間為秒()
()運動開始前,、兩點的距離為__________;線段的中點所表示的數(shù)為__________.
()它們按上述方式運動,、兩點兩點經(jīng)過多少秒會相遇,相遇點所表示的數(shù)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.
小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
【類比引申】
(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
【聯(lián)想拓展】
(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在一個盒子旦有紅球和白球共10個,它們除顏色外都相同,將它們充分搖勻后,從中隨機抽出一個,記下顏色后放回.在摸球活動中得到如下數(shù)據(jù):
摸球總次數(shù) | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
摸到紅球的頻率 | 17 | 32 | 44 | 64 | 78 | a | 103 | 122 | 136 | 148 |
摸到紅球的頻率 | 0.34 | 0.32 | 0.293 | 0.32 | 0.312 | 0.32 | 0.294 | b | 0.302 | c |
(1)請將表格中的數(shù)據(jù)補齊a= ;b= ;c= ;
(2)根據(jù)上表,完成折線統(tǒng)計圖;
當(dāng)摸球次數(shù)很大時,摸到紅球的頻率將會接近 (精確到0.1)
(3)請你估計,當(dāng)摸球次數(shù)很大時,摸到紅球的頻率將會接近 (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當(dāng)點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關(guān)系是_________;
②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是____________.
(2)猜想論證
當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應(yīng)的BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式及點B坐標(biāo);
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=﹣x2+mx+b的圖象C′都經(jīng)過點B(0,1)和點C,且圖象C′過點A(2﹣,0).
(1)求二次函數(shù)的最大值;
(2)設(shè)使y2>y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;
(3)若點F、G在圖象C′上,長度為的線段DE在線段BC上移動,EF與DG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時,在x軸上求點P,使PD+PE最小,求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com