【題目】探索性問題:
已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題:
(1)請(qǐng)直接寫出a、b、c的值.a= ,b= ,c= ;
(2)數(shù)軸上a、b、c三個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時(shí)開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.
①t秒鐘過后,AC的長(zhǎng)度為 (用t的關(guān)系式表示);
②請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
【答案】(1)a=﹣1,b=1,c=5;(2)①6+4t;②BC﹣AB的值是不隨著時(shí)間t的變化而改變,其值為2.
【解析】
(1)根據(jù)b為最小的正整數(shù)求出b的值,再由非負(fù)數(shù)的和的性質(zhì)建立方程就可以求出a、b的值;
(2)①先分別表示出t秒鐘過后A、C的位置,根據(jù)數(shù)軸上兩點(diǎn)之間的距離公式就可以求出結(jié)論;
②先根據(jù)數(shù)軸上兩點(diǎn)之間的距離公式分別表示出BC和AB就可以得出BC-AB的值的情況.
(1)∵b是最小的正整數(shù),
∴b=1.
∵(c﹣5)2+|a+b|=0,
∴
∴
故答案為:a=﹣1,b=1,c=5;
(2)①由題意,得
t秒鐘過后A點(diǎn)表示的數(shù)為:﹣1﹣t,C點(diǎn)表示的數(shù)為:5+3t,
∴AC=5+3t﹣(﹣1﹣t)=6+4t;
故答案為:6+4t;
②由題意,得
BC=4+2t,AB=2+2t,
∴BC﹣AB=4+2t﹣(2+2t)=2.
∴BC﹣AB的值是不隨著時(shí)間t的變化而改變,其值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(﹣4,),B(﹣1,2)是一次函數(shù)y1=ax+b與反比例函數(shù)y2=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),y1﹣y2>0?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和B為圓心,以相同的長(zhǎng)(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E,連接CD,下列結(jié)論錯(cuò)誤的是( 。
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是AB延長(zhǎng)線上的一點(diǎn),CD與半圓O相切于點(diǎn)D,連接AD,BD.
(1)求證:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半徑.(精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點(diǎn)E,AD=8cm,BC=4cm,AB=5cm.從初始時(shí)刻開始,動(dòng)點(diǎn)P,Q 分別從點(diǎn)A,B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,動(dòng)點(diǎn)P沿A﹣B﹣﹣C﹣﹣E的方向運(yùn)動(dòng),到點(diǎn)E停止;動(dòng)點(diǎn)Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運(yùn)動(dòng),到點(diǎn)D停止,設(shè)運(yùn)動(dòng)時(shí)間為xs,△PAQ的面積為ycm2 , (這里規(guī)定:線段是面積為0的三角形)
解答下列問題:
(1)當(dāng)x=2s時(shí),y=cm2;當(dāng)x= s時(shí),y=cm2 .
(2)當(dāng)5≤x≤14 時(shí),求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)動(dòng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求出 S梯形ABCD時(shí)x的值.
(4)直接寫出在整個(gè)運(yùn)動(dòng)過程中,使PQ與四邊形ABCE的對(duì)角線平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明袋子中有1個(gè)紅球,1個(gè)綠球和n個(gè)白球,這些球除顏色外無其他差別.
(1)當(dāng)n=1時(shí),從袋中隨機(jī)摸出1個(gè)球,摸到紅球和摸到白球的可能性是否相同?(在答題卡相應(yīng)位置填“相同”或“不相同”);
(2)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回,大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是
(3)在一個(gè)摸球游戲中,所有可能出現(xiàn)的結(jié)果如下:
根據(jù)樹狀圖呈現(xiàn)的結(jié)果,求兩次摸出的球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的階級(jí)在數(shù)軸上表示出來;
(Ⅳ)原不等式組的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:已知:如圖1,直線AB∥CD,現(xiàn)將直角三角板△PMN放入圖中,其中∠MPN=90°,點(diǎn)P始終在直線MN右側(cè).PM交AB于點(diǎn)E,PN交CD于點(diǎn)F,試探究:∠PFD與∠AEM的數(shù)量關(guān)系.
(1)特例如圖2,當(dāng)點(diǎn)P在直線AB上(即點(diǎn)E與點(diǎn)P重合)時(shí),直接寫出∠PFD與∠AEM的數(shù)量關(guān)系,不必證明;
(2)類比探究:如圖1,當(dāng)點(diǎn)P在AB與CD之間時(shí),猜想∠PFD與∠AEM的數(shù)量關(guān)系,并說明理由;
(3)拓展延伸:如圖3,當(dāng)點(diǎn)P在直線AB的上方時(shí),PN交AB于點(diǎn)H,其他條件不變,猜想∠PFD與∠AEM的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com