【題目】有兩種酒精,一種濃度是60%,另一種濃度為90%,現(xiàn)在要配制成濃度為70%的酒精300克,問:每種需各取多少克?(200克,100克)

【答案】解:設(shè)取60%的酒精x克,則取90%的酒精(300﹣x)克,
則由題意得:60%x+(300﹣x)90%=300×70%,
解得:x=200.
所以300﹣x=100.
答:需60%的酒精200克,90%的酒精100克
【解析】設(shè)取60%的酒精x克,則取90%的酒精(300﹣x)克,根據(jù)一種濃度是60%,另一種濃度為90%,現(xiàn)在要配制成濃度為70%的灑精300克,可列方程求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉(zhuǎn)90°后,點C的對應(yīng)點C′恰好落在y軸上.

(1)直接寫出D點和E點的坐標(biāo);

(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設(shè)點H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時,=5:6?

(3)圖2所示的拋物線是由向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中的錯誤的是( ).

A、一組鄰邊相等的矩形是正方形

B、一組鄰邊相等的平行四邊形是菱形

C、一組對邊相等且有一個角是直角的四邊形是矩形

D、一組對邊平行且相等的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M=x2-2xy+y2 , N=2x2-6xy+3y2 , 求3M-[2M-N-4(M-N)]的值,其中x=-5,y=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtACB中,C=90°,BAC=45°.

(1)(4分)用尺規(guī)作圖,在CA的延長線上截取AD=AB,并連接BD(不寫作法,保留作圖痕跡);

(2)(4分)求∠BDC的度數(shù);

(3)(4分)定義:在直角三角形中,一個銳角A的鄰邊與對邊的比叫做∠A的余切,記作cotA,即根據(jù)定義,利用圖形求cot22.5°的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAD,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.
(1)若AB=1,則BC的長=;
(2)求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩種方法證明“三角形的外角和等于360°”.

如圖,BAE、CBF、ACD是ABC的三個外角.

求證BAE+CBF+ACD=360°.

證法1: ,∴∠BAE+1+CBF+2+ACD+3=180°×3=540°

∴∠BAE+CBF+ACD=540°﹣(1+2+3).

,∴∠BAE+CBF+ACD=540°﹣180°=360°.

請把證法1補充完整,并用不同的方法完成證法2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個連續(xù)奇數(shù)的平方差是(
A.6的倍數(shù)
B.8的倍數(shù)
C.12的倍數(shù)
D.16的倍數(shù)

查看答案和解析>>

同步練習(xí)冊答案