18、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠θ的度數(shù)50°,則∠BAC的度數(shù)是
155°
分析:根據(jù)折疊的性質(zhì)得到∠E=∠ACB,∠BAE=∠BAC,∠ACB=∠ACD,則∠ACD=∠E,利用三角形的內(nèi)角和相等得到∠ACD+∠CAE=∠E+∠θ,則∠EAC=∠θ=50°,所以∠ABE+∠BAC=360°-50°=310°,即可得到∠BAC的度數(shù).
解答:解:∵△ABE是△ABC沿著AB邊翻折180°形成的,
∴∠E=∠ACB,∠BAE=∠BAC,
又∵△ACD是△ABC分別沿著AC邊翻折180°形成的,
∴∠ACB=∠ACD,
∴∠ACD=∠E,
而∠ACD+∠CAE=∠E+∠θ,
∴∠EAC=∠θ=50°,
∴∠ABE+∠BAC=360°-50°=310°,
∴∠BAC=155°.
故答案為155°.
點評:本題考查了折疊的性質(zhì):折疊前后兩圖形全等,即對應(yīng)角相等,對應(yīng)線段相等.也考查了三角形的內(nèi)角和定理以及周角的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABE和△BCD都是等邊三角形,且每個角是60°,那么線段AD與EC有何數(shù)量關(guān)系?請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABE和△ACD中,給出以下四個論斷:
(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
請你以其中三個論斷為已知,剩下的一個作為要證明的結(jié)論,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABE和△ACD有公共點A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延長BE分別交AC、CD于點M、F.求證:
(1)△ABE≌△ACD;
(2)BF⊥CD.

查看答案和解析>>

同步練習(xí)冊答案