如圖(1)已知,矩形ABDC的邊AC=3,對角線長為5,將矩形ABDC置于直角坐系內(nèi),點D與原點O重合.且反比例函數(shù)y=的圖象的一個分支位于第一象限.
(1)求點A的坐標;
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)y=的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動,AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動的總時間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當t為何值時,S2=S1?

【答案】分析:(1)連接OA,根據(jù)勾股定理求出OC,即可得出答案;
(2)求出A的坐標,把A的坐標代入反比例函數(shù)的解析式,求出k即可;
(3)求出BP,根據(jù)三角形的面積公式求出S1即可;求出t秒后A的坐標,得出Q的橫坐標,代入解析式求出Q的縱坐標,求出CQ,根據(jù)三角形的面積公式求出S2即可;
(4)把S1、S2代入已知,得出關(guān)于t的方程,求出t的值即可.
解答:解:(1)連接OA,OA=5,AC=3,
由勾股定理得:OC===4,
∴點A的坐標是(4,3).

(2)4+1=5,
∴1秒后點A的坐標是(5,3),
代入y=得:3=,
∴k=15.

(3)∵A在雙曲線上時t=1,
∴AP=t-1,
BP=BA-AP=4-(t-1)=5-t,
∴S1=BP×BD=×(5-t)×3=-t+,
t秒后A的坐標是(4+t,3),
把x=4+t代入y=得:y=,
∴Q的坐標是(4+t,),
∴S2=×DC×CQ=×4×=,
即S1=-t+,S2=

(4)∵S2=S1,
=×(-t+),
解得:t=3,t=-2(舍去),
當t=3時,S2=S1
點評:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,點的坐標,三角形的面積,矩形的性質(zhì)等知識點的應(yīng)用,熟練的運用性質(zhì)進行計算是解此題的關(guān)鍵,主要考查了學(xué)生的計算能力和運用性質(zhì)進行推理的能力,題目較好,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖所示,已知:矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB、CD的延長線分別交于點E、F.
(1)求證:△BOE≌△DOF;
(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、(體驗探究題)如圖所示,已知一矩形ABCD中,AB=2BC,點E在邊DC上,且AE=AB,則∠EBC的度數(shù)為
15
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)已知,矩形ABDC的邊AC=3,對角線長為5,將矩形ABDC置于直角坐系內(nèi),點D與原點O重合.且反比例函數(shù)y=
k
x
的圖象的一個分支位于第一象限.
(1)求點A的坐標;
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)y=
k
x
的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動,AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動的總時間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當t為何值時,S2=
10
7
S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《第3章 證明(三)》2011年單元測試卷(二)(解析版) 題型:解答題

如圖所示,已知:矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB、CD的延長線分別交于點E、F.
(1)求證:△BOE≌△DOF;
(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案