【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:;
(3)若,,求線段DP的長.
【答案】(1)見解析;(2)見解析;(3)15
【解析】
(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;
(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可證明△ABD∽△DCP,進(jìn)一步可得出結(jié)論;
(3)首先求出BC=10,從而得出OD=5,作CG⊥DP,則可得四邊形ODGC是正方形,故可得CG=5,由可求出GP=,從而可得結(jié)論.
(1)如圖,連接OD,
∵BC是⊙O的直徑,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半徑,
∴PD是⊙O的切線;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP,
∴
∴ABCP=BDCD.
(3)在中,∵,,
∴,
∴,
∴,
過點作,垂足為,則四邊形為正方形,
∴,
∵,
∴,
,
∴,即,
解得,,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是重慶輕軌10號線龍頭寺公園站入口扶梯建設(shè)示意圖.起初工程師計劃修建一段坡度為3:2的扶梯,扶梯總長為米.但這樣坡度大陡,扶梯太長容易引發(fā)安全事故.工程師修改方案:修建、兩段扶梯,并減緩各扶梯的坡度,其中扶梯和平臺形成的為135°,從點看點的仰角為36.5°,段扶梯長米,則段扶梯長度約為( )米(參考數(shù)據(jù):,,)
A.43B.45C.47D.49
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)全體同學(xué)參加了“關(guān)懷貧困學(xué)生”愛心捐款活動,該校隨機抽查了七、八、九三個年級部分學(xué)生捐款情況,將結(jié)果繪制成兩幅不完整的統(tǒng)計圖.根據(jù)圖中的信息,解決下列問題:
(1)這次共抽查了_______名學(xué)生進(jìn)行統(tǒng)計,其中類所對應(yīng)扇形的圓心角的度數(shù)為________;
(2)將條形統(tǒng)計圖補充完整;
(3)該校有名學(xué)生,估計該校捐款元的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)請判斷該方程實數(shù)根的情況;
(2)若原方程的兩實數(shù)根為,,且滿足,求p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸,y軸分別交于點A,B,將△ABO沿直線AB翻折后得到△ABC,若反比例函數(shù)(x<0)的圖象經(jīng)過點C,則k=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“世界讀書日”前夕,某校開展了“讀書助我成長”的閱讀活動.為了了解該校學(xué)生在此次活動中課外閱讀書籍的數(shù)量情況,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,將收集到的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖信息解決下列問題:
(1)求本次調(diào)查中共抽取的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,閱讀本書籍的人數(shù)所在扇形的圓心角度數(shù)是 ;
(4)若該校有名學(xué)生,估計該校在這次活動中閱讀書籍的數(shù)量不低于本的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是矩形ABCD的對角線的交點,AB=15,BC=8,直線EF經(jīng)過點O,分別與邊CD,AB相交于點E,F(其中0<DE<).現(xiàn)將四邊形ADEF沿直線EF折疊得到四邊形A′D′EF,點A,D的對應(yīng)點分別為A′,D′,過D′作D′G⊥CD于點G,則線段D′G的長的最大值是_____,此時折痕EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在雙曲線y=(k<0)上,連接OA,分別以點O和點A為圓心,大于OA的長為半徑作弧,兩弧相交于D,E兩點,直線DE交x軸于點B,交y軸于點C(0,3),連接AB.若AB=1,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作DE⊥AB,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DE= ,∠C=30°,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com