【題目】如圖,∠AOB=90°,∠BOC=30°,射線OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度數(shù);
(2)如果(1)中,∠AOB=α,其他條件不變,求∠MON的度數(shù);
(3)如果(1)中,∠BOC=β(β為銳角),其他條件不變,求∠MON的度數(shù);
(4)從(1)、(2)、(3)的結(jié)果中,你能看出什么規(guī)律?
【答案】
(1)解:∠AOB=90°,∠BOC=30°,
∴∠AOC=90°+30=120°.
由角平分線的性質(zhì)可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.
∵∠MON=∠MOC﹣∠CON,
∴∠MON=60°﹣15°=45°
(2)解:∠AOB=α,∠BOC=30°,
∴∠AOC=α+30°.
由角平分線的性質(zhì)可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.
∵∠MON=∠MOC﹣∠CON,
∴∠MON= α+15°﹣15°= α
(3)解:∠AOB=90°,∠BOC=β,
∴∠AOC=β+90°.
由角平分線的性質(zhì)可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.
∵∠MON=∠MOC﹣∠CON,
∴∠MON= β+45°﹣ β=45°
(4)解:根據(jù)(1)、(2)、(3)可知∠MON= ∠BOC,與∠BOC的大小無關(guān)
【解析】(1)先求得∠AOC的度數(shù),然后由角平分線的定義可知∠MOC=60°,∠CON=15°,最后根據(jù)∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分線的定義可知∠MOC= α+15°,∠CON=15°,最后根據(jù)∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分線的定義可知∠MOC= β+15°,∠CON= β,最后根據(jù)∠MON=∠MOC﹣∠CON求解即可;(4)根據(jù)計算結(jié)果找出其中的規(guī)律即可.
【考點精析】認真審題,首先需要了解角的平分線(從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線),還要掌握角的運算(角之間可以進行加減運算;一個角可以用其他角的和或差來表示)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(2,1),B(﹣1,3),C(﹣3,2).
(1)作出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)點A1的坐標 ,點B1的坐標 ;
(3)點P(a,a﹣2)與點Q關(guān)于x軸對稱,若PQ=8,則點P的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個大型模板,設計要求BA與CD相交成30°角,DA與CB相交成20°角,怎樣通過測量∠A,∠B,∠C,∠D的度數(shù),來檢驗模板是否合格?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正比例函數(shù) y=(k-2)x 中,y 隨 x 的增大而減小,則 k 的取值范圍是( )
A. k≥2 B. k≤2 C. k>2 D. k<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加快4G網(wǎng)絡建設,某市電信運營企業(yè)根據(jù)自身發(fā)展規(guī)劃,2014年計劃完成投資28000000元,將28000000用科學記數(shù)法可表示為( 。
A. 2.8×104B. 0.28×108C. 2.8×107D. 28×105
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P關(guān)于x軸的對稱點P1的坐標是(2,3),那么點P關(guān)于原點的對稱點P2的坐標是( )
A.(﹣3,﹣2)
B.(2,﹣3)
C.(﹣2,﹣3)
D.(﹣2,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算中結(jié)果正確的是( )
A.4+5ab=9ab
B.6xy-x=6y
C.3a2b-3ba2=0
D.12x3+5x4=17x7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com