【題目】如圖,在每個小正方形邊長為1的方格紙中,ABC的頂點都在方格紙格點上.

1ABC的面積為   

2)將ABC經(jīng)過平移后得到A′B′C′,圖中標出了點B的對應點B',補全A′B′C′;

3)在圖中畫出ABC的高CD;

4)能使SABCSQBC的格點QA點除外)共有   個.

【答案】18;(2)見解析;(3)見解析;(45

【解析】

1)根據(jù)三角形面積公式直接計算即可得解;

2)根據(jù)網(wǎng)格結構找出點A′、C′的位置,然后順次連接即可;

3)根據(jù)三角形的高線定義作出即可;

4)根據(jù)等底等高的三角形的面積相等找出點Q即可.

解:(1SABC×4×48

故答案為:8;

2)如圖所示,A′B′C′即為所求;

3)如圖所示,CD即為所求;

4)如圖所示,能使SABCSQBC的格點QA點除外)共有5個,

故答案為:5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明用四根長度相同的木條制作了能夠活動的菱形學具,他先活動學具成為圖1所示菱形,并測得∠B=60°,接著活動學具成為圖2所示正方形,并測得對角線AC=40cm,則圖1中對角線AC的長為

A. 20 cm B. 30 cm C. 0 cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當O為多少度時,CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號).①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習幾何的一個重要方法就是要學會抓住基本圖形,讓我們來做一次研究性學習.

1)如圖①所示的圖形,像我們常見的學習用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關系,并說明理由:

2)如圖②,若ABC中,BO平分∠ABCCO平分∠ACB,且它們相交于點O,試探究∠BOC與∠A的關系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點O,請直接寫出∠BOC與∠A的關系式為    _

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】亮亮和穎穎住在同一幢住宅樓,兩人準備用測量影子的方法測算其樓高,但恰逢陰天,于是兩人商定改用下面方法:如圖,亮亮蹲在地上,穎穎站在亮亮和樓之間,兩人適當調整自己的位置,當樓的頂部 , 穎穎的頭頂及亮亮的眼睛恰在一條直線上時,兩人分別標定自己的位置然后測出兩人之間的距離 , 穎穎與樓之間的距離 , 在一條直線上),穎穎的身高 , 亮亮蹲地觀測時眼睛到地面的距離你能根據(jù)以上測量數(shù)據(jù)幫助他們求出住宅樓的高度嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點,與x軸的另一個交點為(2,0),將拋物線C1向右平移m(m>0)個單位得到拋物線C2 , C2交x軸于A,B兩點(點A在點B的左邊),交y軸于點C.
(1)求拋物線C1的解析式及頂點坐標;
(2)以AC為斜邊向上作等腰直角三角形ACD,當點D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點P,使△ PAC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將直線y=﹣x沿y軸向下平移后的直線恰好經(jīng)過點A(2,﹣4),且與y軸交于點B,在x軸上存在一點P使得PA+PB的值最小,則點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季空調銷售供不應求,某空調廠接到一份緊急訂單,要求在10天內(含10天)完成任務,為提高生產(chǎn)效率,工廠加班加點,接到任務的第一天就生產(chǎn)了空調42臺,以后每天生產(chǎn)的空調都比前一天多2臺,由于機器損耗等原因,當日生產(chǎn)的空調數(shù)量達到50臺后,每多生產(chǎn)一臺,當天生產(chǎn)的所有空調,平均每臺成本就增加20元.
(1)設第x天生產(chǎn)空調y臺,直接寫出y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.
(2)若每臺空調的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設第x天的利潤為W元,試求W與x之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.

查看答案和解析>>

同步練習冊答案