【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線的頂點(diǎn).
(1)若點(diǎn)坐標(biāo)為,求拋物線的解析式和點(diǎn)的坐標(biāo);
(2)若點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),且點(diǎn)的縱坐標(biāo)為,點(diǎn)為拋物線在軸上方一點(diǎn),若以、、、為頂點(diǎn)的四邊形為平行四邊形時(shí),求的值;
(3)直線與(1)中的拋物線交于點(diǎn)、(如圖2),將(1)中的拋物線沿著該直線方向進(jìn)行平移,平移后拋物線的頂點(diǎn)為,與直線的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,在平移的過(guò)程中,求的長(zhǎng)度;當(dāng)時(shí),求點(diǎn)的坐標(biāo).
【答案】(1);;(2); ,;(3)
【解析】
(1)將點(diǎn)D的坐標(biāo)代入函數(shù)解析式,求得a的值;利用拋物線解析式來(lái)求點(diǎn)C的值.
(2)需要分類討論:BC為邊和BC為對(duì)角線兩種情況,根據(jù)“平行四邊形的對(duì)邊平行且相等,平行四邊形的對(duì)角線相互平分”的性質(zhì)列出方程組,利用方程思想解答.
(3)根據(jù)平移規(guī)律得到D′E′的長(zhǎng)度、平移后拋物線的解析式,然后由函數(shù)圖象上點(diǎn)的坐標(biāo)特征求得點(diǎn)B′的坐標(biāo).
(1)依題意得:
解得,
∴拋物線的解析式為:y=-(x+1)(x-4)或
∴
(2)由題意可知、、
對(duì)稱軸為直線,則
①,且,根據(jù)點(diǎn)的平移特征可知
則,
解得:(舍去正值);
②當(dāng)為對(duì)角線時(shí),設(shè),根據(jù)平行四邊形的對(duì)角線互相平分可得
,
解得,
則
解得:
∴,
(3)聯(lián)立
解得:(舍去),
則,根據(jù)拋物線的平移規(guī)律,
則平移后的線段始終等于
設(shè)平移后的,則
平移后的拋物線解析式為:
則:過(guò),
∴,則
拋物線過(guò)
解得,
∴,(與重合,舍去)
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:與直線:交于點(diǎn),則______.
【答案】-1
【解析】
將點(diǎn)A的坐標(biāo)代入兩直線解析式得出關(guān)于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點(diǎn)睛】
本題主要考查兩直線相交或平行問(wèn)題,解題的關(guān)鍵是掌握兩直線的交點(diǎn)坐標(biāo)必定同時(shí)滿足兩個(gè)直線解析式.
【題型】填空題
【結(jié)束】
11
【題目】如圖,長(zhǎng)方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則△AFC的面積等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾天氣嚴(yán)重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級(jí)一班的綜合實(shí)踐小組學(xué)生對(duì)“霧霾天氣的主要成因”隨機(jī)調(diào)查了所在城市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了下圖所示的不完整的統(tǒng)計(jì)圖表:
組別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車尾氣排放 | |
C | 爐煙氣排放 | 15% |
D | 其他(濫砍濫伐等) |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表回答下列問(wèn)題:
(1)本次被調(diào)查的市民共有多少人?并求和的值;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中扇形區(qū)域所對(duì)應(yīng)的圓心角的度數(shù);
(3)若該市有100萬(wàn)人口,請(qǐng)估計(jì)市民認(rèn)為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,,DE⊥BC,垂足為E.
(1)判斷直線ED與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形的位置如圖所示,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,延長(zhǎng)交軸于點(diǎn),作正方形;延長(zhǎng)交軸于點(diǎn),作正方形……按這樣的規(guī)律進(jìn)行下去,第1個(gè)正方形的面積為_____;第4個(gè)正方形的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下 5 個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).
(1)該同學(xué)從 5 個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率 P 為 ;
(2)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率 P1,利用列表法或樹狀圖加以說(shuō)明;
(3)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率 P2 為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到△P1AC,則 P1P 的長(zhǎng)等于( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)交軸于、兩點(diǎn),(點(diǎn)在點(diǎn)的左側(cè))與軸交于點(diǎn),連接.
(1)求點(diǎn)、點(diǎn)和點(diǎn)的坐標(biāo);
(2)如圖2,若點(diǎn)為第四象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,的面積為.求關(guān)于的函數(shù)關(guān)系式,并求出的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校要了解學(xué)生上學(xué)交通情況,選取七年級(jí)全體學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,畫出扇形統(tǒng)計(jì)圖(如圖),圖中“公交車”對(duì)應(yīng)的扇形圓心角為60°,“自行車”對(duì)應(yīng)的扇形圓心角為120°,已知七年級(jí)乘公交車上學(xué)的人數(shù)為50人.
(1)七年級(jí)學(xué)生中,騎自行車和乘公交車上學(xué)的學(xué)生人數(shù)哪個(gè)更多?多多少人?
(2)如果全校有學(xué)生2400人,學(xué)校準(zhǔn)備的600個(gè)自行車停車位是否足夠?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com