【題目】如圖,CD=4,∠C=90°,點B在線段CD上,,沿AB所在的直線折疊△ACB得到△AC′B,若△DC′B是以BC'為腰的等腰三角形,則線段CB的長為_____.
【答案】2或
【解析】
分BC′=BD,BC′=C′D兩種情形分別求解即可.
BC′=BD時,由折疊可知BC′=BC=BD=2;
BC′=C′D時,作C′H⊥BD于H,CM⊥AB于M,取AB的中點N,連接CN,設BC=3k,AC=4k,AB=5k.根據直角三角形ABC的面積和直角三角形斜邊上的中線得CM=k,CN=k,根據勾股定理求出MN,再證明△CMN∽△C′HB,由相似三角形的對應邊成比例求出k的值,即可得出結論.
解:當BC′=BD時,BC=BD=2.
當BC′=C′D時,作C′H⊥BD于H,CM⊥AB于M,取AB的中點N,連接CN.
設BC=3k,AC=4k,AB=5k.則CM=k,CN=k,
∴MN= =k,
∵∠DBC′+∠CBC′=180°,∠CAC′+∠CBC′=180°,
∴∠C′BH=∠CAC′,
∵NC=NA=BN,
∴∠NAC=∠NCA,
∴∠CNM=∠NAC+∠NCA=2∠NAC=∠CAC′,
∴∠C′BH=∠CNM,
∵∠CMN=∠BHC′=90°,
∴△CMN∽△C′HB,
∴= ,
∴ = ,
解得k= ,
∴BC=,
綜上所述,BC的長為2或.
故答案為:2或.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,連結EB,交OD于點F.
(1)求證:OD⊥BE;
(2)若DE=,AB=10,求AE的長;
(3)若△CDE的面積是△OBF面積的,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 某網店銷售一種產品.這種產品的成本價為10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于18元/件市場調查發(fā)現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示:
(1)當12≤x≤18時,求y與x之間的函數關系式;
(2)求每天的銷售利潤w(元)與銷售價x(元/件)之間的函數關系式并求出每件銷售價為多少元時.每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=﹣x+m(m為常數)的圖象與x軸交于A(﹣3,0),與y軸交于點C.以直線x=﹣1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數,且a>0)經過A,C兩點,與x軸正半軸交于點B.
(1)求一次函數及拋物線的函數表達式;
(2)P為線段AC上的一個動點(點P與C、A不重合)過P作x軸的垂線與這個二次函數的圖象交于點D,連接CD,AD,點P的橫坐標為n,當n為多少時,△CDA的面積最大,最大面積為多少?
(3)在對稱軸上是否存在一點E,使∠ACB=∠AEB?若存在,求點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,AB=5cm,AC=4cm,線段AC上有一動點E,連接BE,ED,∠BED=∠A=60°,設A,E兩點間的距離為xcm,C,D兩點間的距離為ycm.
小明根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.
(1)列表:如表的已知數據是根據A,E兩點間的距離x進行取點、畫圖、測量,分別得到了x與y的幾組對應值:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.3 | 2.5 |
y/cm | 0 | 0.39 | 0.75 | 1.07 | 1.33 | 1.45 |
|
x/cm | 2.8 | 3.2 | 3.5 | 3.6 | 3.8 | 3.9 | |
y/cm | 1.53 | 1.42 | 1.17 | 1.03 | 0.63 | 0.35 |
請你補全表格;
(2)描點、連線:在平面直角坐標系xOy中,描出表中各組數值所對應的點(x,y),并畫出函數y關于x的圖象;
(3)探究性質:隨著自變量x的不斷增大,函數y的變化趨勢: ;
(4)解決問題:當AE=2CD時,CD的長度大約是 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,,點是內一個動點,且滿足,當線段取最小值時,記,線段上一動點繞著點順時針旋轉得到點,且滿足 ,則的最小值為 _____________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橫、縱坐標都是整數的點叫做整點.直線y=ax與拋物線y=ax2﹣2ax﹣1(a≠0)圍成的封閉區(qū)域(不包含邊界)為W.
(1)求拋物線頂點坐標(用含a的式子表示);
(2)當a=時,寫出區(qū)域W內的所有整點坐標;
(3)若區(qū)域W內有3個整點,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com