如圖,在平面直角坐標(biāo)系中,線(xiàn)段OA1=1,OA1與x軸的夾角為30°,線(xiàn)段A1A2=1,A2A1⊥OA1,垂足為A1;線(xiàn)段A2A3=1,A3A2⊥A1A2,垂足為A2;線(xiàn)段A3A4=1,A4A3⊥A2A3,垂足為A3;…按此規(guī)律,點(diǎn)A2012的坐標(biāo)為_(kāi)_______.

(503-503,503+503)
分析:過(guò)點(diǎn)A1作A1B⊥x軸,作A1C∥x軸A2C∥y軸,相交于點(diǎn)C,然后求出點(diǎn)A1的坐標(biāo),以及A1C、A2C的長(zhǎng)度,并出A2、A3、A4、A5、A6的坐標(biāo),然后總結(jié)出點(diǎn)的坐標(biāo)的變化規(guī)律,再把2012代入規(guī)律進(jìn)行計(jì)算即可得解.
解答:解:如圖,過(guò)點(diǎn)A1作A1B⊥x軸,作A1C∥x軸A2C∥y軸,相交于點(diǎn)C,
∵OA1=1,OA1與x軸的夾角為30°,
∴OB=OA1•cos30°=1×=,
A1B=OA1•sin30°=1×=,
∴點(diǎn)A1的坐標(biāo)為(,),
∵A2A1⊥OA1,OA1與x軸的夾角為30°,
∴∠OA1C=30°,∠A2A1C=90°-30°=60°,
∴∠A1A2C=90°-60°=30°,
同理可求:A2C=OB=,A1C=A1B=,
所以,點(diǎn)A2的坐標(biāo)為(-,+),
點(diǎn)A3的坐標(biāo)為(-+,++),即(-,+1),
點(diǎn)A4的坐標(biāo)為(--,+1+),即(-1,+1),
點(diǎn)A5的坐標(biāo)為(-1+,+1+),即(-1,+),
點(diǎn)A6的坐標(biāo)為(-1-,++),即(-,+),
…,
當(dāng)n為奇數(shù)時(shí),點(diǎn)An的坐標(biāo)為(-,+),
當(dāng)n為偶數(shù)時(shí),點(diǎn)An的坐標(biāo)為(-,+),
所以,當(dāng)n=2012時(shí),-=503-503,+=503+503,
點(diǎn)A2012的坐標(biāo)為(503-503,503+503).
故答案為:(503-503,503+503).
點(diǎn)評(píng):本題考查了點(diǎn)的坐標(biāo)的規(guī)律變化問(wèn)題,作出輔助線(xiàn),求出各點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的規(guī)律變化的數(shù)值,然后依次寫(xiě)出前幾個(gè)點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)與點(diǎn)的序號(hào)的特點(diǎn)找出點(diǎn)的坐標(biāo)的通式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案