如圖,水平放著的圓柱形排水管的截面半徑是12cm,其中水面高度為6cm,求截面上有水的弓形面積.
分析:連接OA,OB.利用三角函數(shù)求得∠AOB的度數(shù),然后求得扇形AOB的面積和△AOB的面積,兩者的差就是陰影部分的面積.
解答:解:連接OA,OB.
OE=OC-CE=12-6=6cm.
在直角△AOE中,OA=12cm,OE=6cm
∴∠OAE=30°,AE=OA•cos30°=6
3
cm.
∴∠AOB=2∠AOE=120°,AB=2AE=12
3
cm.
∴扇形AOB的面積是:
120π×122
360
=48πcm2
△AOB的面積是:
1
2
AB•OE=
1
2
×12
3
×6=36
3
cm2
則陰影部分的面積是:48π-36
3
cm2
點評:本題考查了扇形的面積的計算,不規(guī)則的圖形的面積可以轉(zhuǎn)化成規(guī)則圖形的面積的和或差來計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,水平放著的圓柱形排水管的截面半徑是0.5m,其中水面寬AB為0.6m,則水的最大深度為
0.9
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,水平放著的圓柱形排水管的截面為1000mm,其中水面寬AB=800mm,則水的最大深度為
 
mm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

作业宝如圖,水平放著的圓柱形排水管的截面半徑是12cm,其中水面高度為6cm,求截面上有水的弓形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省泰安市中考數(shù)學試卷(解析版) 題型:填空題

(2003•泰安)如圖,水平放著的圓柱形排水管的截面半徑是0.5m,其中水面寬AB為0.6m,則水的最大深度為    m.

查看答案和解析>>

同步練習冊答案