【題目】如圖,已知八邊形ABCDEFGH中4個正方形的面積分別為25,144,48,121個平方單位,PR=13(單位),則該八邊形的面積= __________平方單位.
【答案】428+66
【解析】
由PR=13、PS=12、RS=5得出PS⊥SR,PQ⊥QR,求出四邊形PQRS的面積,作QI⊥PR交PS于I,BJ⊥AP交AP的延長線于J,利用全等證出QI=BJ,推出S△APB+S△EFR=S四邊形PQRS,再把各部分的面積相加即可得到答案.
∵4個正方形的面積分別為25,144,48,121,
∴邊長分別為:5、12、4、11,
∵PR=13、PS=12、RS=5,
∴PS⊥SR,PQ⊥QR,
∴S四邊形PQRS=(PSSR+PQQR)=30+22,
顯然S△HSG+S△CDQ=S四邊形PQRS,
如圖作QI⊥PR,交PS于I,BJ⊥AP交AP的延長線于J,
∵BP=PQ,∠BJP=∠QIP=90°,
∵∠APB+∠QPS=360°-90°-90°=180°,
∴∠QPS=∠BPJ,
∴Rt△PQI≌Rt△PBJ,
∴QI=BJ,
∴S△APB=S△PSQ,
同理S△EFR=S△QSR,
則S△APB+S△EFR=S四邊形PQRS,
故八邊形的面積=3(30+22)+144+48+121+25,
=428+66.
故答案為:428+66.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,點E是BC的中點,連接AE并延長交DC的延長線于點F,連接BF.
(1)求證:△ABE≌△FCE;
(2)若AF=AD,求證:四邊形ABFC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形.并用A種紙片一張,B種紙片張,C種紙片兩張拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積.
方法1: ;方法2:
(2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系.
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點,已知A(-1,1),在坐標(biāo)軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( )
A. 10個 B. 8個 C. 4個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA為⊙O的切線,A為切點。過A作OP的垂線AB,垂足為點C,交⊙O于點B。延長BO與⊙O交于點D,與PA的延長線交于點E。
(1)求證:PB為⊙O的切線;
(2)試探究線段AD、AB、CP之間的等量關(guān)系,并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形分別沿著某條直線對稱得到圖形.若上述對稱關(guān)系保持不變,平移,使得四個圖形能夠圍成一個不重疊且無縫隙的正方形,此時點的坐標(biāo)和正方形的邊長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+mx+n的圖象經(jīng)過點A(2,3),與x軸的正半軸交于點G(1+,0);一次函數(shù)y=kx+b的圖象經(jīng)過點A,且交x軸于點P,交拋物線于另一點B,又知點A,B位于點P的同側(cè).
(1)求這個二次函數(shù)的解析式;
(2)若PA=3PB,求一次函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)k>0時,拋物線的對稱軸上是否存在點C,使⊙C同時與x軸和直線AP都相切?如果存在,請求出點C的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com