【題目】如圖,ABCD中,E為平行四邊形內(nèi)部一點,連接AE,BE,CE.
(1)如圖1,AE⊥BC交BC于點F,已知∠EBC=45°,∠BAF=∠ECF,AB=,EF=1,求AD的長;
(2)如圖2,AE⊥CD交CD于點F,AE=CF且∠BEC=90°,G為AB上一點,作GP⊥BE且GP=CE,并以BG為斜邊作等腰Rt△BGH,連接EP、EH.求證:EP=EH.
【答案】(1)AD=3.(2)見解析.
【解析】
(1)證明△AFB≌△CFE(AAS),推出BF=EF=1,利用勾股定理求出AF即可解決問題.
(2)如圖2中,設PG交BE于T,BE交GH于Q.證明△BAE≌△EFC(ASA),推出BE=EC,再證明△EHB≌△PHG(SAS),推出△EHP是等腰直角三角形即可解決問題.
(1)解:如圖1中,
∵AF⊥BC,
∴∠AFB=∠CFE=90°,
∵∠EBC=45°,
∴∠EBF=∠BEF=45°,
∴FB=FE,
∵∠BAF=∠ECF,
∴△AFB≌△CFE(AAS),
∴BF=EF=1,
∵AB= ,
∴AF=CF= =2,
∴BC=BF+CF=3,
∵四邊形ABCD是平行四邊形,
∴AD=BC=3;
(2)證明:如圖2中,設PG交BE于T,BE交GH于Q.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∵AF⊥CD,
∴AF⊥AB,
∴∠BAE=∠EFC=90°,
∵∠BEC=90°,
∴∠AEB+∠CEF=90°,∠CEF+∠ECF=90°,
∴∠AEB=∠ECF,
∵AE=CF,
∴△BAE≌△EFC(ASA),
∴BE=EC,
∵GP=EC,
∴GP=BE,
∵GP⊥BE,
∴∠GTQ=90°,
∵BH=GH,∠BHG=90°,
∴∠BHQ=∠GTQ,
∵∠GQT=∠BQH,
∴∠HGP=∠HBE,
∴△EHB≌△PHG(SAS),
∴EH=PH,∠TEO=∠OPH,
∵∠EOT=∠POH,
∴∠PHO=∠ETO=90°,
∴△EHP是等腰直角三角形,
∴PE=EH.
故答案為:(1)AD=3.(2)見解析.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距______千米.
(2)B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是______小時.
(3)B出發(fā)后______小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,______小時與A相遇,相遇點離B的出發(fā)點______千米.在圖中表示出這個相遇點C.
(5)求出A行走的路程S與時間t的函數(shù)關系式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中考英語聽力測試期間,需要杜絕考點周圍的噪音如圖,點A是我市一中考點,在位于A考點南偏西方向距離120米的C點處有一消防隊在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東方向的F點處突發(fā)火災,消防隊必須立即趕往救火已知消防車的警報聲傳播半徑為110米,問消防車的警報聲對聽力測試是否會造成影響?若會造成影響,已知消防車行駛的速度為每小時60千米,則對聽力測試的影響時間為幾秒?,結果精確到1秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某品牌網(wǎng)上旗艦店售賣兩種規(guī)格的積木玩具:A規(guī)格一盒里面一個獨立包裝袋,共有40塊積木;B規(guī)格一盒里面有三個獨立包裝袋,共有n塊積木.小開的爸爸在網(wǎng)上買了兩種規(guī)格的積木若干盒,結果運輸過程中遭遇暴力快遞,收貨時發(fā)現(xiàn)里面的獨立包裝袋被損壞,積木全部混在了一起,經(jīng)盤點發(fā)現(xiàn),共有20個獨立包裝袋和290塊積木,則n=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在某一次實驗中,測得兩個變量之間的關系如下表所示:
自變量x | 1 | 2 | 3 | 4 | 12 | |
因變量y | 12.03 | 5.98 | 3.04 | 1.99 | 1.00 |
請你根據(jù)表格回答下列問題:
① 這兩個變量之間可能是怎樣的函數(shù)關系?你是怎樣作出判斷的?請你簡要說明理由。
②請你寫出這個函數(shù)的解析式。
③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司要將本公司100噸貨物運往某地銷售,經(jīng)與運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸,已知租用1輛甲型汽車和2輛乙型汽車共需費用2600元;租用2輛甲型汽車和1輛乙型汽車共需費用2500元,且同一型號汽車每輛租車費用相同.
(1)求租用輛甲型汽車、一輛乙型汽車的費用分別是多少元?
(2)若這個公司計劃此次租車費用不超過5200元,通過計算求出該公司有幾種租車方案?請你設計出來,并求出最低的租車費用,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(a,b),B(2,2),且|a-b+8|+=0.
(1)求點A的坐標;
(2)過點A作AC⊥x軸于點C,連接BC,AB,延長AB交x軸于點D,設AB交y軸于點E,那么OD與OE是否相等?請說明理由.
(3)在x軸上是否存在點P,使S△OBP=S△BCD?若存在,請求出P點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李暉到“宇泉牌”服裝專賣店做社會調(diào)查.了解到商店為了激勵營業(yè)員的工作積極性,實行“月總收入=基本工資+計件獎金”的方法,并獲得如下信息:
營業(yè)員 | 小俐 | 小花 |
月銷售件數(shù)(件) | 200 | 150 |
月總收入(元) | 1400 | 1250 |
假設月銷售件數(shù)為件,月總收入為元,銷售每件獎勵元,營業(yè)員月基本工資為元.
(1)求的值;
(2)若營業(yè)員小俐某月總收入不低于元,那么小俐當月至少要賣服裝多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com