【題目】已知拋物線y=﹣x2+2x+3

1)求它的對稱軸和頂點坐標;

2)求該拋物線與x軸的交點坐標;

3)建立平面直角坐標系,畫出這條拋物線的圖象.

【答案】1)拋物線的對稱軸為直線x1,頂點坐標為(14);(2)該拋物線與x軸的交點坐標為(﹣10),(3,0);(3)如圖,見解析.

【解析】

1)利用配方法把一般式化成頂點式,然后根據(jù)二次函數(shù)的性質(zhì)解決問題;

2)通過解方程x22x30得到拋物線與x軸的交點坐標;

3)利用描點法畫出二次函數(shù)的圖象.

1)∵y=﹣x2+2x+3=﹣(x12+4,

∴拋物線的對稱軸為直線x1,頂點坐標為(1,4);

2)當y0時,即﹣x2+2x+30,

解得x1=﹣1x23,

∴該拋物線與x軸的交點坐標為(﹣1,0),(3,0);

3)如圖所示,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,E,F分別是DCCB的延長線上的點,且DE=BF,連接AE,AF,EF

1)求證:△ADE≌△ABF

2△ABF可以由△ADE繞旋轉(zhuǎn)中心________點,按順時針方向旋轉(zhuǎn)________度得到;

3)若BC=8,DE=3,求△AEF的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線S1x軸交于點A(﹣3,0),B1,0),將它向右平移2個單位得新拋物線S2,點MN是拋物線S2上兩點,且MNx軸,交拋物線S1于點C,已知MN3MC,則點C的橫坐標為( 。

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(3, 2),點B的坐標為(3, 0). 作如下操作:①以點A為旋轉(zhuǎn)中心,把ABO順時針旋轉(zhuǎn)90°,得到ACD;

(1)在圖中畫出ACD;

(2)①請直接寫點B旋轉(zhuǎn)到點C的路徑長:____________;

②畫出ABO關(guān)于點O的中心對稱圖形EOF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為r,給出如下定義:若點P的橫、縱坐標均為整數(shù),且到圓心C的距離dr,則稱P為⊙C 的關(guān)聯(lián)整點.

1)當⊙O的半徑r=2時,在點D2,-2),E-1,0),F0,2)中,為⊙O的關(guān)聯(lián)整點的是

2)若直線上存在⊙O的關(guān)聯(lián)整點,且不超過7個,求r的取值范圍;

3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關(guān)聯(lián)整點,求圓心C的橫坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點A、B,與y軸交于點C,點O為坐標原點,點D為拋物線頂點,點E在拋物線上,點Fx軸上,四邊形OCEF為矩形,且OF2,EF3,則ABD的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AB15,BC9,點P,Q分別在BC,AC上,CP3x,CQ4x0x3).把△PCQ繞點P旋轉(zhuǎn),得到△PDE,點D落在線段PQ上.

1)求證:PQAB;

2)若點D在∠BAC的平分線上,求CP的長;

3)若△PDE與△ABC重疊部分圖形的周長為T,且12T16,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C90°,RtABC繞點A順時針旋轉(zhuǎn)到RtADE的位置,點E在斜邊AB上,連結(jié)BD,過點DDFAC于點F

1)如圖1,若點F與點A重合,求證:ACBC

2)如圖2,若點F在線段CA的延長線上,∠DAF=∠DBA,請判斷線段AFBE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程:Max2+bx+c=0Ncx2+bx+a=0,其中ac≠0,a≠c,以下四個結(jié)論:

①如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;

②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

③如果m是方程M的一個根,那么是方程N的一個根;

④如果方程M和方程N有一個相同的根,那么這個根必是x=1

正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案