【題目】如圖,在平面直角坐標系xOy中,直線y= x與雙曲線y= 相交于A,B兩點,C是第一象限內(nèi)雙曲線上一點,連接CA并延長交y軸于點P,連接BP,BC.若△PBC的面積是20,則點C的坐標為 .
【答案】( , )
【解析】解:BC交y軸于D,如圖,設(shè)C點坐標為(a, ) 解方程組 得 或 ,
∴A點坐標為(2,3),B點坐標為(﹣2,﹣3),
設(shè)直線BC的解析式為y=kx+b,
把B(﹣2,﹣3)、C(a, )代入得 ,解得 ,
∴直線BC的解析式為y= x+ ﹣3,
當x=0時,y= x+ ﹣3= ﹣3,
∴D點坐標為(0, ﹣3)
設(shè)直線AC的解析式為y=mx+n,
把A(2,3)、C(a, )代入得 ,解得 ,
∴直線AC的解析式為y=﹣ x+ +3,
當x=0時,y= x+ +3= +3,
∴P點坐標為(0, +3)
∵S△PBC=S△PBD+S△CPD ,
∴ ×2×6+ ×a×6=20,解得a= ,
∴C點坐標為( , ).
故答案為:( , ).
設(shè)C點坐標為(a, ),根據(jù)反比例函數(shù)與一次函數(shù)的交點問題解方程組 可得到A點坐標為(2,3),B點坐標為(﹣2,﹣3),再利用待定系數(shù)法確定直線BC的解析式為y= x+ ﹣3,直線AC的解析式為y=﹣ x+ +3,于是利用y軸上點的坐標特征得到D點坐標為(0, ﹣3),P點坐標為(0, +3),然后利用S△PBC=S△PBD+S△CPD得到關(guān)于a的方程,求出a的值即可得到C點坐標.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=mx+n(m≠0)的圖象,當y2>y1 , x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,鏈接BM
(1)菱形ABCO的邊長
(2)求直線AC的解析式;
(3)動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,
①當0<t< 時,求S與t之間的函數(shù)關(guān)系式;
②在點P運動過程中,當S=3,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6的⊙O內(nèi)有兩條互相垂直的弦AB和CD,AB=8,CD=6,垂足為E.則tan∠OEA的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖(1),PAB為⊙O的割線,直線PC與⊙O有公共點C,且PC2=PA×PB,
(1)求證:∠PCA=∠PBC;直線PC是⊙O的切線;
(2)如圖(2),作弦CD,使CD⊥AB,連接AD、BC,若AD=2,BC=6,求⊙O的半徑;
(3)如圖(3),若⊙O的半徑為 ,PO= ,MO=2,∠POM=90°,⊙O上是否存在一點Q,使得PQ+ QM有最小值?若存在,請求出這個最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認為應(yīng)選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于張家界核心景區(qū)的賀龍銅像,是我國近百年來最大的銅像.銅像由像體AD和底座CD兩部分組成.如圖,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像體AD的高度(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地某個季度的氣溫情況,用適當?shù)某闃臃椒◤脑摰剡@個季度中抽取30天,對每天的最高氣溫x(單位:℃)進行調(diào)查,并將所得的數(shù)據(jù)按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五組,得到如圖頻數(shù)分布直方圖.
(1)求這30天最高氣溫的平均數(shù)和中位數(shù)(各組的實際數(shù)據(jù)用該組的組中值代表);
(2)每月按30天計算,各組的實際數(shù)據(jù)用該組的組中值代表,估計該地這個季度中最高氣溫超過(1)中平均數(shù)的天數(shù);
(3)如果從最高氣溫不低于24℃的兩組內(nèi)隨機選取兩天,請你直接寫出這兩天都在氣溫最高一組內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com