【題目】為了落實國務(wù)院的指示精神,某地方政府出臺了一系列三農(nóng)優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.

1)求wx之間的函數(shù)關(guān)系式.

2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?

3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

【答案】解:(1)由題意得:,

wx的函數(shù)關(guān)系式為:。

2,

﹣20x=30時,w有最大值.w最大值為200。

答:該產(chǎn)品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤200元。

3)當w=150時,可得方程﹣2x﹣302+200=150,解得x1=25,x2=35

3528,x2=35不符合題意,應(yīng)舍去。

答:該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克25元。

【解析】

試題1)根據(jù)銷售額=銷售量×銷售價單x,列出函數(shù)關(guān)系式。

2)用配方法將(2)的函數(shù)關(guān)系式變形,利用二次函數(shù)的性質(zhì)求最大值。

3)把y=150代入(2)的函數(shù)關(guān)系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值。 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答.

(1)把ABC繞點P旋轉(zhuǎn)180°得A′B′C′.

(2)把ABC向右平移7個單位得A″B″C″.

(3)A′B′C′與A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點EF、GH分別是邊AB、BCCDDA的中點,連接EFFG、GHHE.若EH=2EF,則下列結(jié)論正確的是

A. ABEF B. AB=2EF C. ABEF D. ABEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的一個角與三角形的一個角重合,然后它的對角頂點在這個重合角的對邊上,這個菱形稱為這個三角形的親密菱形,如圖,在△CFE中,CF=6,CE=12,FCE=45°,以點C為圓心,以任意長為半徑作AD,再分別以點A和點D為圓心,大于AD長為半徑做弧,交EF于點B,ABCD.

(1)求證:四邊形ACDB為△CFE的親密菱形;

(2)求四邊形ACDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線相交于點0,AC2BD.將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A3,0、B1,0兩點,與y軸相交于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求D點坐標;

2求二次函數(shù)的解析式;

3根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°

1)尺規(guī)作圖:作AC的垂直平分線,垂足為E,交AB于點D.(不寫作法,保留作圖痕跡,不證明)

2)連結(jié)CD,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中的一條射線,點在邊上,,交于點,于點于點,于點,連接于點

求證:四邊形為矩形;

,試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案