如圖:∠AOB:∠BOC:∠COD=2:3:4,射線OM、ON分別平分∠AOB與∠COD,又∠MON=90°,則∠AOB為


  1. A.
    20°
  2. B.
    30°
  3. C.
    40°
  4. D.
    45°
B
分析:首先設(shè)出未知數(shù),然后利用角的和差關(guān)系和角平分線的性質(zhì)列出方程,即可求出∠AOB的度數(shù).
解答:設(shè)∠AOB=2x°則∠BOC=3x°∠COD=4x°,
∵射線OM、ON分別平分∠AOB與∠COD,
∴∠BOM=∠AOB=x°,
∠CON=∠COD=2x°,
又∵∠MON=90°,
∴x+3x+2x=90,
x=15,
∴∠AOB=15°×2=30°.
故選B.
點評:本題主要考查了角平分線的性質(zhì)和角的和差關(guān)系,解題時要能根據(jù)圖形找出等量關(guān)系列出方程,求出角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠AOB=90°,OM是∠AOB的平分線,將三角尺的直角頂點P在射線OM上滑動,兩直角邊分別與OA,OB交于點C和D,證明:PC=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠AOB是一建筑鋼架,∠AOB=10°,為使鋼架更加穩(wěn)固,需在內(nèi)部添加一些鋼管EF、FG、GH、HI、IJ,添加鋼管的長度都與OE相等,則∠BIJ=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求證:△AOC≌△BOD;
(2)判斷△CAD是什么形狀的三角形,說明理由;
(3)若CD=2,AC=
3
,∠ACD=30°,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AOB是一條直線,∠AOD=∠COE=90°,則圖中∠1的余角是
∠2或∠4
∠2或∠4
,∠AOE的補角是
∠4或∠2
∠4或∠2
,相等的銳角有
2
2
對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,∠AOB=45°,點P為∠AOB內(nèi)一點,且OP=4,M為OA上一點,N為OB上一點,則△PMN的周長的最小值為( 。
A、4
2
B、4
3
C、4
D、2
2

查看答案和解析>>

同步練習(xí)冊答案