精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,點A在x軸上,△ABO是直角三角形,∠ABO=90°,點B的坐標為(-1,2),將△ABO繞原點O順時針旋轉90°得到△A1B1O,則過A1,B兩點的直線解析式為   
【答案】分析:過點B作BC⊥x軸于點C,根據相似三角形對應邊成比例求出AC的長度,然后求出OA的長度,從而得到點A的坐標,再根據旋轉變換的性質求出點A1的坐標,然后利用待定系數法求一次函數解析式解答即可.
解答:解:如圖,過點B作BC⊥x軸于點C,
∵點B的坐標為(-1,2),
∴OC=1,BC=2,
∵∠ABO=90°,
∴∠BAC+∠AOB=90°,
又∵∠BAC+∠ABC=90°,
∴∠AOB=∠ABC,
∴Rt△ABC∽Rt△BOC,
=
=,
解得AC=4,
∴OA=OC+AC=1+4=5,
∴點A(-5,0),
根據旋轉變換的性質,點A1(0,5),
設過A1,B兩點的直線解析式為y=kx+b,
,
解得
所以過A1,B兩點的直線解析式為y=3x+5.
故答案為:y=3x+5.
點評:本題考查了待定系數法求一次函數解析式,旋轉變換的性質,作輔助線構造出相似三角形,利用相似三角形對應邊成比例求出AC的長度,然后得到點A的坐標是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案