精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知四邊形ABCDADBC.點P在直線CD上運動(點P和點C,D不重合,點P,A,B不在同一條直線上),若記∠DAP,∠APB,∠PBC分別為∠α,∠β,∠γ

1)如圖1,當點P在線段CD上運動時,寫出∠α,∠β,∠γ之間的關系并說出理由;

2)如圖2,如果點P在線段CD的延長線上運動,探究∠α,∠β,∠γ之間的關系,并說明理由.

3)如圖3BI平分∠PBC,AIBI于點I,交BP于點K,且∠PAI:∠DAI=51,∠APB=20°,∠I=30°,求∠PAI的度數.

【答案】1)∠β=α+γ 理由見解析;(2)點P在線段CD的延長線上運動時,∠β=γ﹣∠α;點P在線段DC的延長線上運動時,∠β=α﹣∠γ;理由見解析;(3)∠PAI=50°

【解析】

1)過點PPEAD,如圖1,由PEAD得∠α=APE,由ADBCPEBC,則∠γ=BPE,所以∠β=APE+BPE=α+γ;

2)點P在線段CD的延長線上運動時,∠β=γ-α;點P在線段DC的延長線上運動時,∠β=α-γ.以點P在線段CD的延長線上運動為例說明:

如圖2,根據平行線的性質由ADBC得∠PBC=1,根據三角形外角性質得∠1=PAD+APB,所以∠APB=PBC-PAD,即∠β=γ-α

3)根據題意可設∠PBI=CBI=m,則∠CBP=2m,∠PAI=m+10°,由∠PAI:∠DAI =51得∠DAI=m+2°,根據∠DHP是△APH的外角列出方程求解即可.

1)∠β=α+γ

理由如下:

過點PPEAD,如圖1,

PEAD

∴∠α=APE,

ADBC,

PEBC,

∴∠γ=BPE,

∴∠β=APE+BPE=α+γ

2)點P在線段CD的延長線上運動時,∠β=γ﹣∠α;點P在線段DC的延長線上運動時,∠β=α﹣∠γ

以點P在線段CD的延長線上運動為例說明:

如圖2

ADBC,

∴∠PBC=1

而∠1=PAD+APB,

∴∠APB=PBC﹣∠PAD,

即∠β=γ﹣∠α

3)∵BI平分∠ABC,

∴可設∠PBI=CBI=m,則∠CBP=2m

ADBC,

∴∠DHP=CBP=2m,

∵∠APB=20°,∠I=30°,∠BKI=AKP,

∴∠PAI=m+30°20°=m+10°,

又∵∠PAI:∠DAI =51,

∴∠DAI=PAI=m+2°,

∵∠DHP是△APH的外角,

∴∠DHP=PAH+APB,

2m=m+2°+m+10°+20°,

解得m=40°,

∴∠PAI=40°+10°=50°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(單位:個)進行統(tǒng)計,結果如下:

10

6

10

6

8

7

9

7

8

9

經過計算,甲進球的平均數為8,方差為3.2.

1)求乙進球的平均數和方差;

2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應選誰?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校學生會決定從三名學生會干事中選拔一名干事,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績如下表所示:

測試項目

測試成績/

筆試

75

80

90

面試

93

70

68

根據錄用程序,學校組織200名學生采用投票推薦的方式,對三人進行民主測評,三人得票率(沒有棄權,每位同學只能推薦1人)如扇形統(tǒng)計圖所示,每得一票記1分.

1)扇形統(tǒng)計圖中= , 分別計算三人民主評議的得分;

2)根據實際需要,學校將筆試、面試、民主評議三項得分按433的比例確定個人成績,得分最高者將被選中,通過計算說明三人中誰被選中?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某開發(fā)區(qū)計劃在一塊四邊形的空地ABCD上種植草坪,已知∠A=90°,AB=4m,BC=12m,CD=13m,DA=3m,種植每平方米草皮的預算費用為300元,若第一年對草坪的保養(yǎng)費用占種植草皮總預算的4%,以后每年的保養(yǎng)費用都將在前一年的基礎上遞增2%,求第三年的草坪保養(yǎng)費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABCD,∠FGH=90°,∠GHM= 40°,∠HMN30°,并且∠EFA的兩倍比∠CNP10°,則∠PND的大小是(

A. 100°B. 120°C. 130°D. 150°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績如圖所示.

根據圖示填寫下表:

平均數

中位數

眾數

A

______

85

______

B

85

______

100

結合兩校成績的平均數和中位數,分析哪個學校的決賽成績較好;

計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個動點,連接AP、OP,則△AOP面積的最大值為( 。

A. 4 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四幅圖象分別表示變量之間的關系,請按圖象的順序,將下面的四種情境與之對應排序.正確的順序是( 。

①籃球運動員投籃時,投出去的籃球的高度與時間的關系;

②去超市購買同一單價的水果,所付費用與水果數量的關系;

③李老師使用的是一種含月租的手機計費方式,則他每月所付話費與通話時間的關系;

④周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的關系

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2﹣4x+c的圖象經過坐標原點,與x軸交于點A﹣4,0).

1)求二次函數的解析式;

2)在拋物線上存在點P,滿足SAOP=8,請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案