【題目】如圖,在Rt△POQ中,OP=OQ=4,M是PQ中點(diǎn),∠P=∠Q=45°,將一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B.試說明:MA=MB.
+
【答案】說明見解析
【解析】試題分析:過點(diǎn)M作ME⊥PO,MF⊥QO,可得四邊形OEBF是矩形,根據(jù)三角形的中位線定理可得ME=MF,再根據(jù)同角的余角相等可得再利用“角邊角”證明和全等,根據(jù)全等三角形對應(yīng)邊相等即可證明;
試題解析:過點(diǎn)M作ME⊥PO,MF⊥QO,
∴∠PEM=∠QFM=90°,又∵∠P=∠Q=45°,
∴∠PME=∠QMF=45°,∠EMF=90°,
又∵PM=QN,
∴△PME≌△QMF,∴EM=FM,
∵∠EMF=∠AMB=90°,
∴∠EMA=∠FMB,
又∵EM=FM,∠AEM=∠BFM=90°,
∴△AEM≌△BFM(ASA),
∴MA=MB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過點(diǎn)A作AC⊥x軸,垂足為C,過點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E
(1)若AC=OD,求a、b的值;
(2)若BC∥AE,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線OM是正比例函數(shù)的圖象,點(diǎn)A的坐標(biāo)為(1,0),在直線OM上找一點(diǎn)N,使△ONA是等腰三角形,則符合條件的點(diǎn)N有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果m是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),n是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),那么關(guān)于x的一元二次方程x2-2mx+n2=0有實(shí)數(shù)根的概率為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com