【題目】(1)已知關(guān)于x的方程2x2﹣mx﹣m2=0有一個根是1,求m的值;
(2)已知關(guān)于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一個根是0,求另一個根和m的值.
【答案】(1)m1=﹣2,m2=1(2)另一根為3,m的值為1
【解析】
(1)根據(jù)方程的解的概念,把x的值代入方程就可求出m的值;
(2)先求出m的值,再把m的值代入方程,就可以求出方程的另一個根.
(1)把x=1代入方程2x2﹣mx﹣m2=0,
得:2﹣m﹣m2=0,
解方程m2+m﹣2=0,
(m+2)(m﹣1)=0,
∴m1=﹣2,m2=1,
(2)把x=0代入方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1),
得:,
∴m=1,
把m=1代入方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1),
得:(2x﹣1)(x+1)=(3x+1)(x﹣1),
整理得:x2﹣3x=0,
x(x﹣3)=0,
∴x1=0,x2=3.
故另一根為3,m的值為1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義運算ab=a(1-b),下面給出了關(guān)于這種運算的四個結(jié)論:
①2(-2)=6 ②ab=ba
③若a+b=0,則(aa)+(bb)=2ab ④若ab=0,則a=0.
其中正確結(jié)論的序號是 (填上你認(rèn)為所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點M,則在P、Q運動的過程中,
(1)求證:△ABQ ≌ △CAP;
(2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(3)連接PQ,當(dāng)點P,Q運動多少秒時,△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點,AE∥BC.
(1)作∠ADC的平分線DF,與AE交于點F;(用尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)的條件下,若AD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣2,﹣1,0,1,,4這六個數(shù)中,隨機抽取一個數(shù)記為a,若數(shù)a使關(guān)于x的分式方程有整數(shù)解,且使拋物線y=(a﹣1)x2+3x﹣1的圖象與x軸有交點,那么這六個數(shù)中所滿足條件的a的值之和為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市場上甲種商品的采購價為60元/件,乙種商品的采購價為100元/件,某商店需要采購甲、乙兩種商品共15件,且乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍.設(shè)購買甲種商品件(>0),購買兩種商品共花費元.
(1)求出與的函數(shù)關(guān)系式(寫出自變量的取值范圍);
(2)試?yán)煤瘮?shù)的性質(zhì)說明,當(dāng)采購多少件甲種商品時,所需要的費用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=(m+1)x+的圖象與x軸的負半軸相交于點A,與y軸相交于點B,且△OAB的面積為.
(1)求m的值及點A的坐標(biāo);
(2)過點B作直線BP與x軸的正半軸相交于點P,且OP=3OA,求直線BP的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com