【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象過點A(,2).

(1)求k的值;

(2)如圖,在反比例函數(shù)(x0)上有一點C,過A點的直線lx軸,并與OC的延長線交于點B,且OC=2BC,求點C的坐標(biāo).

【答案】(1)k=3;(2)C(,).

【解析】

試題分析:(1)直接把A點坐標(biāo)代入反比例函數(shù)求出k的值即可;

(2)過點C作MNx軸,分別交l、x軸于點M、N,根據(jù)MBC∽△NOC,OC=2BC求出的值,再由A點坐標(biāo)求出MN及CN的值,進而可得出結(jié)論.

試題解析:(1)把點A ,2)代入得k=3;

(2)過點C作MNx軸,分別交l、x軸于點M、N.

ABy軸,MBx軸,∴△MBC∽△NOC,

OC=2BC,=,即=

A(,2),MN=2,CN=,=,解得ON=,C().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)規(guī)定學(xué)生的學(xué)期體育總評成績滿分為100分,其中平均成績占20%,期中考試成績占30%,期末考試成績占50%,小彤的三項成績(百分制)依次為95,90,88,則小彤這學(xué)期的體育總評成績?yōu)?/span>________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個公共頂點,并且一個角的兩邊分別是另一個角的兩邊的_______,具有這種位置關(guān)系的兩個角互為對頂角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,3),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);
(3)作出△ABC關(guān)于x軸的對稱圖形△A′B′C′.(不用寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)

(1)求反比例函數(shù)的解析式;

(2)連接OB(O是坐標(biāo)原點),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題如圖1,在邊長為a的正方形中
(1)畫出兩個長方形陰影,則陰影部分的面積是(寫成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個長方形,它的長是 , 寬是 , 面積是(寫成多項式乘法的形式);

(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式(用式子表達);
(4)運用你所得到的公式計算:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,點A是線段DE上一點,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,我們能得到什么結(jié)論?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖銳角△ABC,若∠ABC=40°,∠ACB=70°,點D、E在邊AB、AC上,CD與BE交于點H.

(1)若BE⊥AC,CD⊥AB,求∠BHC的度數(shù).
(2)若BE、CD平分∠ABC和∠ACB,求∠BHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子產(chǎn)品經(jīng)過11月、12月連續(xù)兩次降價,售價由3900元降到了2500元.設(shè)平均每月降價的百分率為x,根據(jù)題意列出的方程是( 。

A. 3900(1+x)2=2500 B. 3900(1﹣x)2=2500

C. 3900(1﹣2x)=2500 D. 2500(1+x)2=3900

查看答案和解析>>

同步練習(xí)冊答案