精英家教網 > 初中數學 > 題目詳情
(2013•保定一模)若規(guī)定運算符號“★”具有性質:a★b=a2-ab.例如(-1)★2=(-1)2-(-1)×2=3,則1★(-2)=
3
3
分析:根據規(guī)定運算法則,分別把a、b換成1、(-2),然后進行計算即可求解.
解答:解:根據題意,
1★(-2)
=12-1×(-2)
=1+2
=3.
故答案為:3.
點評:本題考查了有理數的混合運算問題,根據規(guī)定新運算代入進行計算即可,比較簡單.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•保定一模)如圖,已知△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•保定一模)如圖,點D是等邊△ABC內一點,將△DBC繞點B旋轉到△EBA的位置,則∠EBD的度數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•保定一模)如圖,AB表示的是某單位辦公樓的高,AE表示從樓頂垂掛下的宣傳條幅,其長為30米,CD表示張明同學所處的位置與高度,張明同學測得條幅頂端A的仰角為60°,測得條幅底端E的仰角為30°.求張明同學到辦公樓的水平距離(精確到整米數).
(參考數據:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•保定一模)閱讀:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,連接AE,AC,如圖1
求證:AE=CD,AE⊥CD.
證明:延長CD交AE于K
在△AEB和△CDB中
∠ABE=∠CBD=90°
AB=BC
BE=DB

∴△AEB≌△CDB(SAS)
∴AE=CD
∠EAB=∠DCB
∵∠DCB+∠CDB=90°
∠ADK=∠CDB
∴∠ADK+∠DAK=90°
∴∠ADK=90°
∴AE⊥CD
(2)類比:若關系和位置關系還成立嗎?若成立,請給與證明;若不成立,請說明理由.將(1)中的Rt△DBE繞點逆時針旋轉一個銳角,如圖2所示,問(1)中線段AE,CD間的數量;
(3)拓展:在圖2中,將“AB=BC,DB=EB”改成“BC=kAB,DB=kEB,k>1”其它條件均不變,如圖3所示,問(1)中線段AE,CD間的數量關系和位置關系還成立嗎?若成立,請給與證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•保定一模)如圖1,圖2所示,直線l:y=x+b過點P,點P自原點O開始,沿x軸正半軸以每秒1個單位的速度運動.設運動時間為t(s),(0≤t≤7).直角梯形ABCD,AB∥CD,∠D=90°,A(1,O),B(7,0),C(4,3).直線l與折線DC-CB交于N,與折線DA-AB交于M,與y軸交于點Q.設△BMN的面積為S.

(1)用含t的代數式表示b;
(2)確定S與t之間的函數關系式;
(3)t為何值時,S最大;
(4)t為何值時,S等于梯形ABCD面積的一半;
(5)直接寫出t為何值時,△POQ與以P,B,C為頂點的三角形相似.

查看答案和解析>>

同步練習冊答案