【題目】某水庫的水位下降1米,記作﹣1米,那么+1.2米表示

【答案】該水庫的水位上升1.2米
【解析】解:“正”和“負”相對,所以若某水庫的水位下降1米,記作﹣1米,
那么+1.2米表示該水庫的水位上升1.2米.
故答案為:該水庫的水位上升1.2米.
在一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實數(shù)根之積為正,求實數(shù)m的取值范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有16名工人,每人每天可加工甲種零件5個或乙種零件4個.在這16名工人中,一部分人加工甲種零件,其余的加工乙種零件.已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可獲利24元.若此車間一共獲利1440元,求這一天有幾個工人加工甲種零件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x﹣y=3,m+n=2,則(y+m)﹣(x﹣n)的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店需要購進一批電視機和洗衣機,根據(jù)市場調(diào)查,決定電視機進貨量不少于洗衣機進貨量的一半.電視機與洗衣機的進價和售價如下表:

電視機

洗衣機

進價(/)

1 800

1 500

售價(/)

2 000

1 600

計劃購進電視機和洗衣機共 100 臺,商店最多可籌集資金161 800 元.

(1)請你幫助商店算一算有多少種進貨方案(不考慮除進價之外的其他費用)

2)哪種進貨方案待商店銷售購進的電視機與洗衣機完畢后獲得的利潤最多?并求出最大的利潤(利潤=售價-進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點P(2m4,m1).試分別根據(jù)下列條件,求出P點的坐標.

(1)Py軸上;

(2)Px軸上;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,拋物線經(jīng)過點B(-2,4).

(1)求a的值;

(2)作Rt△OAB,使∠BOA=90°,且OB=2OA,求點A坐標;

(3)在(2)的條件下,過點A作直線ACx軸于點C,交拋物線于點D,將該拋物線向左或向右平移tt>0)個單位長度,記平移后點D的對應(yīng)點為D′,點B的對應(yīng)點為B′.當CD′+OB′的值最小時,請直接寫出t的值和平移后相應(yīng)的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.

(1)求m,n的值.

(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達式.

(3)直接寫出y1>y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12x23x1,二次項是________二次項系數(shù)是________;

一次項是________一次項系數(shù)是________;常數(shù)項是________

23a2b22ab2ab1________次多項式,它有________,故是________________項式

查看答案和解析>>

同步練習(xí)冊答案