【題目】拋物線與x軸交于點A、B(點A在點B的左邊), 點P在拋物線上.
(1)點C是x軸上一個動點,四邊形ACPQ是正方形,則滿足條件 的點Q的坐標(biāo)是______.
(2)連結(jié)AP,以AP為一條對角線作平行四邊形AMPN,使點M在 以點(1,0),(0,1)為端點的線段上,則當(dāng)點N的縱坐標(biāo)取最小值時,N的坐標(biāo)為______.
【答案】(-1,-3)或(-1,5) (0,-5)
【解析】
(1)AC是正方形的一邊,如圖所示:設(shè)點則點 根據(jù)正方形的邊長相等,列出方程求解即可.
(2)當(dāng)點P在拋物線的頂點,點M在點時,點N的縱坐標(biāo)最小,畫出示意圖,求解即可.
(1) AC是正方形的一邊,如圖所示:
設(shè)點則點
則,
解得:或,
當(dāng)時, 點
當(dāng)時, 點
(2) 當(dāng)點P在拋物線的頂點,點M在點時,點N的縱坐標(biāo)最小,如圖所示:
則
直線AM所在直線的方程為:
設(shè)點N
則:
解得: 舍去
即點N的坐標(biāo)為
故答案為:(1). (-1,-3)或(-1,5) (2). (0,-5)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人參加射擊比賽,兩人成績?nèi)鐖D所示.
(1)填表:
平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) | |
甲 | 7 | 1 | 7 | |
乙 | 9 |
(2)只看平均數(shù)和方差,成績更好的是 .(填“甲”或“乙”)
(3)僅就折線圖上兩人射擊命中環(huán)數(shù)的走勢看,更有潛力的是 .(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中△ABC的A、B、C三點坐標(biāo)為A(7,1)、B(8,2)、C(9,0).
(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側(cè)),畫出△A′B′C′關(guān)于y軸對稱的△A′'B′'C′';
(2)寫出點A'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C′,M是BC的中點,P是A'B’的中點,連接PM,若BC=4,AC=3,則在旋轉(zhuǎn)的過程中,線段PM的長度不可能是( 。
A.5B.4.5C.2.5D.0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD.過E作EF∥DC交BC的延長線于F.
(1)證明:四邊形CDEF是平行四邊形;
(2)若四邊形CDEF的周長是18cm,AC的長為6cm,求線段AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)的圖象與x軸有兩個不同交點的概率是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△EDB由△ABC繞點B逆時針旋轉(zhuǎn)而來,D點落在AC上,DE交AB于點F,若AB=AC,DB=BF,則AF與BF的比值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C,E,F,B在一條直線上,點A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=50°,求∠D的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com