【題目】定義一種新運(yùn)算“a*b”:當(dāng)a≥b時,a*b=a+2b;當(dāng)a<b時,a*b=a-2b.
例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30
(1)填空:(-4)*3= .
(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),則x的取值范圍為 ;
(3)已知(3x-7)*(3-2x)<-6,求x的取值范圍;
(4)小明在計算(2x2-4x+8)*(x2+2x-2)時隨意取了一個x的值進(jìn)行計算,得出結(jié)果是-4,小麗告訴小明計算錯了,問小麗是如何判斷的.
【答案】(1)-10;(2)x≥5;(3)x>5或x<1;(4)小明計算錯誤.
【解析】
(1)根據(jù)公式計算可得;
(2)結(jié)合公式知3x-4≥x+6,解之可得;
(3)由題意可得或 ,分別求解可得;
(4)計算(2x2-4x+8)*(x2+2x-2)時需要分情況討論計算.
(1)(-4)*3=-4-2×3=-10,
故答案為:-10;
(2)∵(3x-4)*(x+6)=(3x-4)+2(x+6),
∴3x-4≥x+6,
解得:x≥5,
故答案為:x≥5.
(3)由題意知①或②,
解①得:x>5;
解②得:x<1;
(4)若2x2-4x+8≥x2+2x-2,則原式=2x2-4x+8+2(x2+2x-2)
=2x2-4x+8+2x2+4x-4
=4x2+4;
若2x2-4x+8<x2+2x-2,則原式=2x2-4x+8-2(x2+2x-2)
=2x2-4x+8-2x2-4x+4
=-8x+12,
所以小明計算錯誤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D、E分別是邊BC、CA上的點(diǎn),且BD=CE,AD、BE相交于點(diǎn)O.
(1)求證:△BAE≌△ACD;
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā).設(shè)慢車行駛的時間為,兩車之間的距離為,圖中的折線表示與之間的關(guān)系.根據(jù)圖象解答下列問題:
(1)甲、乙兩地之間的距離為多少;
(2)請解釋圖中點(diǎn)的實際意義;
(3)求慢車和快車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的相鄰邊建立直角坐標(biāo)系,AB=3,BC=5.點(diǎn)E是邊CD上一點(diǎn),將△ADE沿著AE翻折,點(diǎn)D恰好落在BC邊上,記為F.
(1)求折痕AE所在直線的函數(shù)解析式______;
(2)若把翻折后的矩形沿y軸正半軸向上平移m個單位,連結(jié)OF,若△OAF是等腰三角形,則m的值是______,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補(bǔ)全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸上,點(diǎn)A與點(diǎn)C關(guān)于y軸對稱,點(diǎn)E是線段AC上的點(diǎn)(點(diǎn)E不與點(diǎn)A、C重合)
(1)若點(diǎn)A的坐標(biāo)為(a,0),則點(diǎn)C的坐標(biāo)為 ;
(2)如圖1,點(diǎn)F是線段AB上的點(diǎn),若∠BEF=∠BAO,∠BAO=2∠OBE,求證:AF=CE;
(3)如圖2,若點(diǎn)D為AC上一點(diǎn),連接ED,滿足BE=BD,試探究∠ABE與∠DEC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AE=3,ED=,求BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F在AC上,且AF=CE,點(diǎn)G、H分別在AB、CD上,且AG=CH,AC與GH相交于點(diǎn)O.
(1)求證:EG//FH;
(2)GH、EF互相平分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com