【題目】如圖,一個二次函數(shù)的圖象經(jīng)過點A、C、B三點,點A的坐標(biāo)為(1,0),點B的坐標(biāo)為(3,0),點C在y軸的正半軸上,且AB=OC.

(1)求點C的坐標(biāo);

(2)求這個二次函數(shù)的解析式,并求出該函數(shù)的最大值.

【答案】(1)點C的坐標(biāo)為(0,4).(2)當(dāng)x=1時,y有最大值y=++4=

【解析】

試題分析:(1)首先求得AB,得出OC,求得點C的坐標(biāo);

(2)利用待定系數(shù)法求的函數(shù)解析式,進(jìn)一步利用頂點坐標(biāo)公式求得最值即可.

試題解析:(1)A(1,0)、B(3,0),AO=1,OB=3,即AB=AO+OB=1+3=4.

OC=4,即點C的坐標(biāo)為(0,4).

(2)設(shè)圖象經(jīng)過A、C、B三點的二次函數(shù)的解析式為y=ax2+bx+c,把A、C、B三點的坐標(biāo)分別代入上式,

,解得a=,b=x,c=4,

所求的二次函數(shù)解析式為y=x2+x+4.

點A、B的坐標(biāo)分別為點A(1,0)、B(3,0),

線段AB的中點坐標(biāo)為(1,0),即拋物線的對稱軸為直線x=1.a=<0,

當(dāng)x=1時,y有最大值y=++4=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC.

(1)若∠BOC=60°,求∠EOF的度數(shù);
(2)若∠AOC=x°(x>90),此時能否求出∠EOF的大小,若能請求出它的數(shù)值;若不能,請用含x的代數(shù)式來表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點A(m,n)在第三象限,那么點B(0,m+n)在 (
A.x軸正半軸上
B.x軸負(fù)半軸上
C.y軸正半軸上
D.y軸負(fù)半軸上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地2月18日到23日PM2.5濃度和空氣質(zhì)量指數(shù)AQI的統(tǒng)計圖(當(dāng)AQI不大于100時稱空氣質(zhì)量為“優(yōu)良”).由圖可得下列說法:①18日的PM2.5濃度最低;②這六天中有4天空氣質(zhì)量為“優(yōu)良”;③空氣質(zhì)量指數(shù)AQI與PM2.5濃度有關(guān).其中正確的個數(shù)有( )

圖(1)

圖(2)
A.3個
B.2個
C.1個
D.0個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a+6和2a﹣15是一個數(shù)的平方根,則這個數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年的“六一”兒童節(jié)是個星期五,某校學(xué)生會在初一年級進(jìn)行了學(xué)生對學(xué)校作息安排的三種期望(全天休息、半天休息、全天上課)的抽樣調(diào)查,并把調(diào)查結(jié)果繪成了下面兩個統(tǒng)計圖,已知此次被調(diào)查的男、女學(xué)生人數(shù)相同.根據(jù)圖中信息,下列判斷:①在被調(diào)查的學(xué)生中,期望全天休息的人數(shù)占53%;②本次調(diào)查了200名學(xué)生;③在被調(diào)查的學(xué)生中,有30%的女生期望休息半天;④若該,F(xiàn)有初一學(xué)生900人,根據(jù)調(diào)查結(jié)果估計期望至少休息半天的學(xué)生超過了720人.其中正確的判斷有(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國將在2020年發(fā)射火星探測器,開展火星全球性和綜合性探測.已知地球與火星的最近距離約為5500萬千米,將數(shù)據(jù)“5500用科學(xué)記數(shù)法可表示為(

A.5.5×106B.5.5×107C.55×106D.0.55×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】算式8﹣7+3﹣6正確的讀法是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程2x2-5x-2=0的根的情況是__________

查看答案和解析>>

同步練習(xí)冊答案