【題目】已知,如圖,在平行四邊形ABCD中,點M,N分別在邊ABDC上,作直線MN,分別交DABC的延長線于點EF,且AE=CF.

(1) 求證:AEM≌△CFN.

(2) 求證:四邊形BNDM是平行四邊形

【答案】1)見詳解;(2)見詳解

【解析】

1)根據(jù)四邊形ABCD是平行四邊形,證明∠E=F,∠EAM=FNC,結(jié)合AE=CF,問題得證;

(2)根據(jù)△AEM≌△CFN和據(jù)四邊形ABCD是平行四邊形,證明BM=DN,BMDN,問題得證.

解:(1)證明:∵四邊形ABCD是平行四邊形,

ADBC,∠BAD=BCD

∴∠E=F,∠EAM=FNC,

AE=CF,

∴△AEM≌△CFN;

(2)證明:∵△AEM≌△CFN

AM=CN,

∵四邊形ABCD是平行四邊形,

ABCD,AB=CD

BM=DN,

∴四邊形BNDM是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線x軸交于點A﹣1,0)和點B,與y軸相交于點C0,3),拋物線的對稱軸為直線

1)求這條拋物線的關(guān)系式,并寫出其對稱軸和頂點M的坐標(biāo);

2)如果直線y=kx+b經(jīng)過C、M兩點,且與x軸交于點D,點C關(guān)于直線的對稱點為N,試證明四邊形CDAN是平行四邊形;

3)點P在直線上,且以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說理填空:如圖,點EDC的中點,EC=EB,∠CDA=120°,DF//BE,且DF平分∠CDA,若△BCE的周長為18cm,求DC的長.

解: 因為DF平分∠CDA,(已知)

所以∠FDC=_________.____________________

因為∠CDA=120°,(已知)所以∠FDC=______°.

因為DF//BE,(已知)

所以∠FDC=_________=60°.____________________________________

又因為EC=EB,(已知)

所以△BCE為等邊三角形.________________________________________

因為△BCE的周長為18cm,(已知) 所以BE=EC=BC=6 cm.

因為點EDC的中點,(已知) 所以DC=2EC=12 cm .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市今年共有萬名考生參加中考,為了了解這萬名考生的數(shù)學(xué)成績,從中抽取了名考生的數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,以下說法正確的有( )

①這種調(diào)查采用了抽樣調(diào)查的方式;②這種調(diào)查采用了全面調(diào)查的方式;是樣本容量;④每名考生的數(shù)學(xué)成績是個體

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙片沿著AE折疊后,點D恰好與BC邊上的點F重合,已知AB6cm,BC10cm,則EC的長度為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中, 為對角線 的交點,經(jīng)過點和點作⊙,分別交, 于點 .已知正方形邊長為,的半徑為,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從我市至棗莊正在修筑的高速公路經(jīng)過某村,需把本村部分農(nóng)戶搬遷至一個規(guī)劃區(qū)域建房.若這批搬遷農(nóng)戶建房每戶占地,則規(guī)劃區(qū)域內(nèi)綠地面積占規(guī)劃區(qū)域總面積的;政府又鼓勵本村不需要搬遷的農(nóng)戶到規(guī)劃區(qū)域建房,這樣又有戶農(nóng)戶加入建房,若仍以每戶占地計算,則這時綠地面積只占規(guī)劃區(qū)域總面積的.問:

1)(列方程組解應(yīng)用題)最初必須搬遷建房的農(nóng)戶有多少,政府的規(guī)劃區(qū)域總面積是多少平方米?

2)若要求綠地面積不得少于規(guī)劃區(qū)域總面積的,為了符合要求,需要退出部分農(nóng)戶,至少需要退出幾戶農(nóng)戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(或方程組)解應(yīng)用題2019年是決勝全面建成小康社會、打好污染防治攻堅戰(zhàn)的關(guān)鍵之年.為了解決垃圾回收最后一公里的難題,小黃狗智能垃圾分類回收環(huán)保公益項目通過大數(shù)據(jù)、人工智能和物聯(lián)網(wǎng)等先進(jìn)科技進(jìn)駐小區(qū)、寫字樓、學(xué)校、機(jī)關(guān)和社區(qū)等進(jìn)行回收.某位小區(qū)居民裝修房屋,在過去的一個月內(nèi)投放紙類垃圾和塑料垃圾共82公斤,其中紙類垃圾的投放是塑料垃圾的8倍多10公斤,請問這位小區(qū)居民在過去的一個月內(nèi)投放紙類垃圾和塑料垃圾分別是多少公斤?

查看答案和解析>>

同步練習(xí)冊答案