【題目】如圖,扇形紙扇完全打開后,陰影部分為貼紙,外側(cè)兩竹條AB,AC的夾角為120°,弧BC的長為30πcm,AD的長為15cm,則貼紙的面積等于cm2

【答案】600π
【解析】解:∵弧BC的長為30πcm, ∴ =30π,
解得AB=45cm,
貼紙的面積=大扇形的面積﹣小扇形的面積,
= ×30π×45﹣ × ×15=600πcm2 ,
所以答案是600π.
【考點精析】利用弧長計算公式和扇形面積計算公式對題目進行判斷即可得到答案,需要熟知若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高天然氣使用效率,保障居民的本機用氣需求,某地積極推進階梯式氣價改革,若一戶居民的年用氣量不超過300m3,價格為2.5元/m3,若年用氣量超過300m3,超出部分的價格為3元/m3,

(1)根據(jù)題意,填寫下表:

(2)設(shè)一戶居民的年用氣量為xm3,付款金額為y元,求y關(guān)于x的解析式;

(3)若某戶居民一年使用天然氣所付的金額為870元,求該戶居民的年用氣量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4 cm,BC=8 cm,點P從點D出發(fā)向點A運動,運動到點A即停止;同時點Q從點B出發(fā)向點C運動,運動到點C即停止.點P,Q的速度的速度都是1 cm/s,連結(jié)PQ,AQ,CP,設(shè)點P,Q運動的時間為t(s).

(1)當t為何值時,四邊形ABQP是矩形?

(2)當t為何值時,四邊形AQCP是菱形?

(3)分別求出(2)中菱形AQCP的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二 次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形.如圖1,平行四邊形ABCD中,若AB=1,BC=2,則平行四 邊形ABCD為1階準菱形.

(I)判斷與推理:

(i)鄰邊長分別為2和3的平行四邊形是_________階準菱形;

(ii)為了剪去一個菱形,進行如下操作:如圖2,把平行四邊形ABCD沿BE折疊(點E在AD上),使點A落在BC邊上的點F,得到四邊形ABFE,請證明四邊形ABFE是菱形.

)操作與計算:

已知平行四邊形ABCD的鄰邊長分別為l,a(a>1),且是3階準菱形,請畫出平行四邊形ABCD及裁剪線的示意圖,并在圖形下方寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在直角坐標系中,有A(0,3),B(2,1),C(﹣3,﹣3)三點.

(1)請在平面直角坐標系中描出各點,并畫出三角形ABC;

(2)三角形ABC的面積是   ;(直接寫出結(jié)果)

(3)設(shè)BCy軸于點P,試求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,垂足為D,AB=AC=9,BC=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,過點A作直線EF.
(1)如圖①,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(只需寫出三種情況): ①;②;③
(2)如圖②,AB是非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
(3)如圖③,AB是非直徑的弦,∠CAE=∠ABC,EF還是⊙O的切線嗎?若是,請說明理由;若不是,請解釋原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=﹣x2+bx+c交x軸于另一點C,點D是拋物線的頂點.

(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點,(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿中,,點分別在 邊上,且, .

⑴.求證:⊿是等腰三角形;

⑵.當 時,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案