【題目】在△ABC中,ABAC,∠A60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF120°,DE與線段AB相交于點(diǎn)E,DF與線段AC(或AC的延長(zhǎng)線)相交于點(diǎn)F

1)如圖1,若DFAC,垂足為F,證明:DEDF

2)如圖2,將∠EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點(diǎn)FDEDF仍然成立嗎?說(shuō)明理由.

3)如圖3,將∠EDF繼續(xù)繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長(zhǎng)線相交于點(diǎn)FDEDF仍然成立嗎?說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)結(jié)論仍然成立.,DEDF,見(jiàn)解析;(3)仍然成立,DEDF,見(jiàn)解析

【解析】

1)由題意根據(jù)全等三角形的性質(zhì)與判定,結(jié)合等邊三角形性質(zhì)證明△BED≌△CFDASA),即可證得DEDF;

2)根據(jù)題意先取AC中點(diǎn)G,連接DG,繼而再全等三角形的性質(zhì)與判定,結(jié)合等邊三角形性質(zhì)證明△EDG≌△FDCASA),進(jìn)而證得DEDF;

3)由題意過(guò)點(diǎn)DDN⊥ACN,DM⊥ABM, 繼而再全等三角形的性質(zhì)與判定,結(jié)合等邊三角形性質(zhì)證明△DME≌△DNFASA),即可證得DEDF

解:(1∵AB=AC,∠A=60°,

∴△ABC是等邊三角形,∠B=∠C=60°,

∵DBC的中點(diǎn),

∴BD=CD,

∵∠EDF=120°,DF⊥AC,

∴∠FDC=30°,

∴∠EDB=30°

∴△BED≌△CFDASA,

∴DE=DF.

2)取AC中點(diǎn)G,連接DG,如下圖,

∵DBC的中點(diǎn),

∴DG=AC=BD=CD,

∴△BDG是等邊三角形,

∴∠GDE+∠EDB=60°,

∵∠EDF=120°,

∴∠FDC+∠EDB=60°,

∴∠EDG=∠FDC,

∴△EDG≌△FDCASA,

∴DE=DF,

結(jié)論仍然成立.

3)如下圖,過(guò)點(diǎn)DDN⊥ACN,DM⊥ABM,

∴∠DME=∠DNF=90°,

由(1)可知∠B=∠C=60°,

∴∠NDC=∠BDM=30°,DM=DN,

∴∠MDN=120°,∠NDF=∠MDE,

∴△DME≌△DNFASA,

∴DE=DF,

仍然成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】機(jī)動(dòng)車行駛到斑馬線要禮讓行人等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)本次共調(diào)查  名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是  ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有800名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)非常了解的有多少名?

(4)通過(guò)此次調(diào)查,數(shù)學(xué)課外實(shí)踐小組的學(xué)生對(duì)交通法規(guī)有了更多的認(rèn)識(shí),學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求甲和乙兩名學(xué)生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y軸交于A點(diǎn),過(guò)點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過(guò)點(diǎn)BBCx軸,垂足為點(diǎn)C(3,0).

1)求直線AB的函數(shù)關(guān)系式;

2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過(guò)點(diǎn)PPNx軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N. 設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長(zhǎng)度為s個(gè)單位,求st的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;

3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問(wèn)對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+2x+3的圖象交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)).若把點(diǎn)B向上平移mm0)個(gè)單位長(zhǎng)度得點(diǎn)B1,若點(diǎn)B1向左平移nn0)個(gè)單位長(zhǎng)度,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+2)個(gè)單位長(zhǎng)度,將與該二次函數(shù)圖象上的點(diǎn)B3重合.則n的值為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)已知矩形AOCD在平面直角坐標(biāo)系xOy中,∠CAO60°OA2,B點(diǎn)的坐標(biāo)為(2,0),動(dòng)點(diǎn)M以每秒2個(gè)單位長(zhǎng)度的速度沿ACB運(yùn)動(dòng)(M點(diǎn)不與點(diǎn)A、點(diǎn)B重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)求經(jīng)過(guò)BC、D三點(diǎn)的拋物線解析式;

2)點(diǎn)P在(1)中的拋物線上,當(dāng)MAC中點(diǎn)時(shí),若PAM≌△PDM,求點(diǎn)P的坐標(biāo);

3)當(dāng)點(diǎn)MCB上運(yùn)動(dòng)時(shí),如圖(2)過(guò)點(diǎn)MMEAD,MFx軸,垂足分別為E、F,設(shè)矩形AEMFABC重疊部分面積為S,求St的函數(shù)關(guān)系式,并求出S的最大值;

4)如圖(3)點(diǎn)P在(1)中的拋物線上,QCA延長(zhǎng)線上的一點(diǎn),且PQ兩點(diǎn)均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點(diǎn),若點(diǎn)Px軸的距離為dQPB的面積為2d,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBCD,BEACE,MAB邊的中點(diǎn),連結(jié)ME、MD、ED,設(shè)AB=10,∠DBE=30°,則EDM的面積為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C的中點(diǎn),則下列結(jié)論:①OCAE;②ECBC;③∠DAE=∠ABE;④ACOE,其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南省政府為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),計(jì)劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長(zhǎng),已知墻高AB3米,墻面與保溫板所成的角∠BAC150°,在點(diǎn)D處測(cè)得A點(diǎn)、C點(diǎn)的仰角分別為9°,156°,如圖2所示求保溫板AC的長(zhǎng)是多少米?(精確到0.1米)(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈016,sin15.6°≈0.27cos15.6°≈0.96,tan15.6°≈0.28,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),已知點(diǎn),且對(duì)稱軸為直線

1)求該拋物線的解析式;

2)點(diǎn)是第四象限內(nèi)拋物線上的一點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸,垂足為.當(dāng)時(shí),直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案