【題目】如圖,在△ABC中,AB=AC,DBA延長線上的一點(diǎn),點(diǎn)EAC的中點(diǎn).

(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法).

①作∠DAC的平分線AM;

②連接BE并延長交AM于點(diǎn)F

③連接FC.

(2)猜想與證明:猜想四邊形ABCF的形狀,并說明理由.

【答案】(1)詳見解析;(2)四邊形ABCF是平行四邊形.

【解析】

1)利用尺規(guī)作出∠DAC的平分線AM即可,連接BE延長BEAMF,連接FC;

2)只要證明△AEF≌△CEB即可解決問題.

解:(1)如圖所示:

2)四邊形ABCF是平行四邊形.

理由如下:

ABAC,

∴∠ABC=∠ACB

∴∠DAC=∠ABC+ACB2ACB

由作圖可知∠DAC2FAC,

∴∠ACB=∠FAC

AFBC

∵點(diǎn)EAC的中點(diǎn),

AECE

在△AEF和△CEB中, ∠FAE=ECB,AECE,∠AEF=∠CEB,

∴△AEF≌△CEBASA),

AFBC

又∵AFBC,

∴四邊形ABCF是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )

A. 130° B. 150° C. 160° D. 170°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤.通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.為了保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

(3)當(dāng)每斤的售價(jià)定為多少元時(shí),每天獲利最大?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球運(yùn)動(dòng)是同學(xué)們非常喜歡的日常體育運(yùn)動(dòng),為了更合理地配置體育運(yùn)動(dòng)器材和場地,某校針對(duì)“你最喜歡的球類運(yùn)動(dòng)”進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名被調(diào)查者分別選一項(xiàng)球類運(yùn)動(dòng)),并把調(diào)查結(jié)果繪制成如圖的兩個(gè)統(tǒng)計(jì)圖表(不完整).

某校學(xué)生最喜愛的球類運(yùn)動(dòng)統(tǒng)計(jì)表

最喜愛的球類運(yùn)動(dòng)

人數(shù)

足球

27

籃球

乒乓球

24

羽毛球

24

排球

某校學(xué)生最喜愛的球類運(yùn)動(dòng)統(tǒng)計(jì)圖

請根據(jù)所給信息,解答下列問題:

(1)本次被抽樣調(diào)查的學(xué)生共有多少人?

(2)求扇形統(tǒng)計(jì)圖中最喜愛籃球部分的圓心角度數(shù);

(3)若該校共有學(xué)生960人,請根據(jù)抽樣結(jié)果估計(jì)學(xué)生中最喜愛乒乓球的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.

(1)求m的值和反比例函數(shù)的表達(dá)式;

(2)觀察圖象,直接寫出當(dāng)x>0時(shí)不等式2x+6﹣<0的解集;

(3)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),BMN的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,四邊形OABC為菱形,A點(diǎn)的坐標(biāo)為,對(duì)角線OBAC相交于D點(diǎn),雙曲線經(jīng)過D點(diǎn),交BC的延長線于E點(diǎn),且,則E點(diǎn)的坐標(biāo)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某湖心島上有一亭子A,在亭子A的正東方向上的湖邊有一棵樹B,在這個(gè)湖心島的湖邊C處測得亭子A在北偏西45°方向上,測得樹B在北偏東36°方向上,又測得B、C之間的距離等于200米,求A、B之間的距離

(結(jié)果精確到1米).(參考數(shù)據(jù):≈1.414,sin36°≈0.588,cos36°≈0.809,tan36°≈0. 727,cot36°≈1.376)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy(如圖)中,已知拋物線y=+bx+c點(diǎn)經(jīng)過A1,0)、B0,2).

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線的對(duì)稱軸與x軸的交點(diǎn)為C,第四象限內(nèi)的點(diǎn)D在該拋物線的對(duì)稱軸上,如果以點(diǎn)A、CD所組成的三角形與AOB相似,求點(diǎn)D的坐標(biāo);

3)設(shè)點(diǎn)E在該拋物線的對(duì)稱軸上,它的縱坐標(biāo)是1,聯(lián)結(jié)AEBE,求sinABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個(gè)小正方形的邊長為1的網(wǎng)格中,有以AB為直徑的半圓和線段AP,AB組成的一個(gè)封閉圖形,點(diǎn)A,B,P都在網(wǎng)格點(diǎn)上.

(Ⅰ)計(jì)算這個(gè)圖形的面積為_____;

(Ⅱ)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一條能夠?qū)⑦@個(gè)圖形的面積平分的直線,并簡要說明這條直線是如何找到的(不要求證明)_____

查看答案和解析>>

同步練習(xí)冊答案