(2001•黃岡)已知:如圖,△ABC中,AB=AC=10,BC=12,F(xiàn)為BC的中點(diǎn),D是FC上的一點(diǎn),過(guò)點(diǎn)D作BC的垂線交AC于點(diǎn)G,交BA的延長(zhǎng)線于點(diǎn)E,如果設(shè)DC=x,則
(1)圖中哪些線段(如線段BD可記作yBD)可以看成是x的函數(shù)[如yBD=12-x(0<x<6,yFD6-x(0<x<6)]?請(qǐng)?jiān)賹懗銎渲械乃膫(gè)函數(shù)關(guān)系式:①
yDG=
4
3
x
yDG=
4
3
x
;②
yGC=
5
3
x
yGC=
5
3
x
;③
yAG=-
5
3
x
+10
yAG=-
5
3
x
+10
;④
yAE=
5
3
(6-x)=-
5
3
x+10
yAE=
5
3
(6-x)=-
5
3
x+10

(2)圖中哪些圖形的面積(如△CDG的面積可記作S△CDG)可以看成是x的函數(shù)[如S△CDG=
2
3
x2
(0<x<6)],請(qǐng)?jiān)賹懗銎渲械膬蓚(gè)函數(shù)關(guān)系式:①
S△BDE=
2
3
(12-x)2=
2
3
x2-16x+96
S△BDE=
2
3
(12-x)2=
2
3
x2-16x+96
;②
S四邊形AGDF=
2
3
(36-x2)=-
2
3
x2+24
S四邊形AGDF=
2
3
(36-x2)=-
2
3
x2+24
分析:(1)△ABC中,AB=AC=10,BC=12,F(xiàn)為BC的中點(diǎn),則FC=BF=6,△ABF和△ACF是兩個(gè)全等的三角形,且△CGD∽△CAF,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可寫出.(答案不唯一);
(2)根據(jù)(1)中的結(jié)論,利用三角形的面積公式即可求解.(答案不唯一).
解答:解:(1)①yDG=
4
3
x;②yGC=
5
3
x;③yAG=-
5
3
x
+10;④yAE=
5
3
(6-x)=-
5
3
x+10;⑤yDE=
4
3
(12-x)=-
4
3
x+16;⑥yEG=
8
3
(6-x)=-
8
3
x+16;⑦yDE=
5
3
(12-x)=-
5
3
x+20等,其中0<x<6.
?(2)①S△AEG=
4
3
(6-x)2=
4
3
x2-16x+4;
?②S△BDE=
2
3
(12-x)2=
2
3
x2-16x+96;
??③S四邊形AGDF=
2
3
(36-x2)=-
2
3
x2+24;
??④S四邊形ABDG=-
2
3
x2+48;
??⑤S四邊形AFDE=
2
3
(12-x)2-24=
2
3
x2-16x+72;
??⑥S四邊形BEGC=
4
3
(72-12x+x2)=
4
3
x2+16x+96等,其中0<x<6.
點(diǎn)評(píng):本題考查建立幾何量間的函數(shù)關(guān)系式,解本題時(shí)先要理解新定義的函數(shù)記法,再結(jié)合隱含的等腰三角形、兩線平行、三角形相似等條件,找出符合題意的函數(shù)解析式.本題結(jié)論較多,具有開(kāi)放性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,過(guò)點(diǎn)P的直線交⊙O1于點(diǎn)D,交⊙O2于點(diǎn)E;DA與⊙O2相切,切點(diǎn)為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2001•黃岡)先閱讀下列第(1)題的解答過(guò)程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
當(dāng)a=-1-2
2
,β=-1+2
2
時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請(qǐng)仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問(wèn)題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2001•黃岡)已知一個(gè)二次函數(shù)的圖象經(jīng)過(guò)A(4,-3),B(2,1)和C(-1,-8)三點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式以及它的圖象與x軸的交點(diǎn)M,N(M在N的左邊)的坐標(biāo).
(2)若以線段MN為直徑作⊙G,過(guò)坐標(biāo)原點(diǎn)O作⊙G的切線OD,切點(diǎn)為D,求OD的長(zhǎng).
(3)求直線OD的解析式.
(4)在直線OD上是否存在點(diǎn)P,使得△MNP是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo)(只需寫出結(jié)果,不必寫出解答過(guò)程);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案