【題目】如圖的矩形ABCD中,E為AB的中點(diǎn),有一圓過(guò)C、D、E三點(diǎn),且此圓分別與AD、BC相交于P、Q兩點(diǎn).甲、乙兩人想找到此圓的圓心O,其作法如下:
(甲) 作∠DEC的角平分線(xiàn)L,作DE的中垂線(xiàn),交L于O點(diǎn),則O即為所求;
(乙) 連接PC、QD,兩線(xiàn)段交于一點(diǎn)O,則O即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( )
A. 兩人皆正確 B. 兩人皆錯(cuò)誤
C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確
【答案】A
【解析】
根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)判斷甲,根據(jù)90°的圓周角所對(duì)的弦是直徑判斷乙.
解:甲,∵ED=EC,
∴△DEC為等腰三角形,
∴L為CD之中垂線(xiàn),
∴O為兩中垂線(xiàn)之交點(diǎn),
即O為△CDE的外心,
∴O為此圓圓心.
乙,∵∠ADC=90°,∠DCB=90°,
∴PC、QD為此圓直徑,
∴PC與QD的交點(diǎn)O為此圓圓心,因此甲、乙兩人皆正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),弦CE⊥AB于點(diǎn)F,過(guò)點(diǎn)D的切線(xiàn)交EC的延長(zhǎng)線(xiàn)于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④APAD=CQCB.其中正確的是_____(寫(xiě)出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹(shù)CD的高度,他們先在點(diǎn)A處測(cè)得樹(shù)頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹(shù)頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線(xiàn)上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹(shù)CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)
【答案】8.7米
【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長(zhǎng)度,然后在直角△BDC中,利用三角函數(shù)即可求解.
試題解析:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
答:這棵樹(shù)CD的高度為8.7米.
考點(diǎn):解直角三角形的應(yīng)用
【題型】解答題
【結(jié)束】
23
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點(diǎn),點(diǎn)P是拋物線(xiàn)上在第一象限內(nèi)的一點(diǎn),直線(xiàn)BP與y軸相交于點(diǎn)C.
(1)求拋物線(xiàn)y=﹣x2+ax+b的解析式;
(2)當(dāng)點(diǎn)P是線(xiàn)段BC的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,求sin∠OCB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC在第一象限, ,AB=AC=2,點(diǎn)A在直線(xiàn)上,其中點(diǎn)A的橫坐標(biāo)為1,且AB∥軸,AC∥軸,若雙曲線(xiàn)與有交點(diǎn),則k的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是置于水平地面上的一個(gè)球形儲(chǔ)油罐,小敏想測(cè)量它的半徑、在陽(yáng)光下,他測(cè)得球的影子的最遠(yuǎn)點(diǎn)A到球罐與地面接觸點(diǎn)B的距離是10米(如示意圖,AB=10米);同一時(shí)刻,他又測(cè)得豎直立在地面上長(zhǎng)為1米的竹竿的影子長(zhǎng)為2米,那么,球的半徑是________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線(xiàn)MN,使∠BCM=2∠A.
(1)判斷直線(xiàn)MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知邊長(zhǎng)為2的正三角形ABC沿著直線(xiàn)l滾動(dòng).
(1)當(dāng)△ABC滾動(dòng)一周到△A1B1C1的位置,此時(shí)A點(diǎn)運(yùn)動(dòng)的路程為 ;約為 ;(精確到0.1,π=3.14…)
(2)設(shè)△ABC滾動(dòng)240°時(shí),C點(diǎn)的位置為C′,△ABC滾動(dòng)480°時(shí),A點(diǎn)的位置為A′.請(qǐng)你利用三角函數(shù)中正切的兩角和公式tan(α+β)=(tanα+tanβ)÷(1﹣tanαtanβ),求出∠CAC′+∠CAA′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn),開(kāi)口方向都相同,則稱(chēng)這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”。
(1)請(qǐng)寫(xiě)出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的圖象經(jīng)過(guò)點(diǎn)A(1,1),若y1+y2為y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求當(dāng)0≤x≤3時(shí),y2的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)(為常數(shù),)的圖像與軸、軸分別相交于點(diǎn),半徑為4的⊙與軸正半軸相交于點(diǎn),與軸相交于點(diǎn),點(diǎn)在點(diǎn)上方.
(1)若直線(xiàn)與弧有兩個(gè)交點(diǎn).
①求的度數(shù);
②用含的代數(shù)式表示,并直接寫(xiě)出的取值范圍;
(2)設(shè),在線(xiàn)段上是否存在點(diǎn),使?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com