【題目】如圖①,已知正方形ABCD的邊長為1,點(diǎn)P是AD邊上的一個(gè)動點(diǎn),點(diǎn)A關(guān)于直線BP的對稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.
(1)BQ+DQ的最小值是_______,此時(shí)x的值是_______;
(2)如圖②,若PQ的延長線交CD邊于點(diǎn)E,并且∠CQD=90°.
①求證:點(diǎn)E是CD的中點(diǎn); ②求x的值.
(3)若點(diǎn)P是射線AD上的一個(gè)動點(diǎn),請直接寫出當(dāng)△CDQ為等腰三角形時(shí)x的值.
【答案】(1),;(2) ①理由詳見解析;②;(3) 2﹣或或2+.
【解析】
試題分析:(1)根據(jù)兩點(diǎn)之間,線段最短可知,點(diǎn)Q在線段BD上時(shí)BQ+DQ的值最小,是BD的長度,利用勾股定理即可求出;再根據(jù)△PDQ是等腰直角三角形求出x的值;
(2) ①由對稱可知AB=BQ=BC,因此∠BCQ=∠BQC.根據(jù)∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,從而EQ=EC.再根據(jù)∠CQD=90°可得∠DQE+∠CQE=90°, ∠QCE+∠QDE=90°,而∠EQC=∠ECQ, 所以∠QDE=∠DQE,從而EQ=ED.易得點(diǎn)E是CD的中點(diǎn);②在Rt△PDE中,PE= PQ+QE=x+,PD=1﹣x,PQ=x,根據(jù)勾股定理即可求出x的值.
(3) △CDQ為等腰三角形分兩種情況:①CD為腰,以點(diǎn)C 為圓心,以CD的長為半徑畫弧,兩弧交點(diǎn)即為使得△CDQ為等腰三角形的Q點(diǎn); ②CD為底邊時(shí),作CD的垂直平分線,與的交點(diǎn)即為△CDQ為等腰三角形的Q點(diǎn),則共有 3個(gè)Q點(diǎn),那么也共有3個(gè)P點(diǎn),作輔助線,利用直角三角形的性質(zhì)求之即得.
試題解析:(1),.
(2)①證明:在正方形ABCD中,
AB=BC,∠A=∠BCD=90°.
∵Q點(diǎn)為A點(diǎn)關(guān)于BP的對稱點(diǎn),
∴AB=QB,∠A=∠PQB=90°,
∴QB=BC,∠BQE=∠BCE,
∴∠BQC=∠BCQ,
∴∠EQC=∠EQB﹣∠CQB=∠ECB﹣∠QCB=∠ECQ,
∴EQ=EC.
在Rt△QDC中,
∵∠QDE=90°﹣∠QCE,
∠DQE=90°﹣∠EQC,
∴∠QDE=∠DQE,
∴EQ=ED,
∴CE=EQ=ED,即E為CD的中點(diǎn).
②∵AP=x,AD=1,
∴PD=1﹣x,PQ=x,CD=1.
在Rt△DQC中,
∵E為CD的中點(diǎn),
∴DE=QE=CE=,
∴PE=PQ+QE=x+,
∴,
解得 x=.
(3)△CDQ為等腰三角形時(shí)x的值為2-,,2+.
如圖,以點(diǎn)B為圓心,以AB的長為半徑畫弧,以點(diǎn)C為圓心,以CD的長為半徑畫弧,兩弧分別交于Q1,Q3.此時(shí)△CDQ1,△CDQ3都為以CD為腰的等腰三角形.作CD的垂直平分線交弧AC于點(diǎn)Q2,此時(shí)
△CDQ2以CD為底的等腰三形.
以下對此Q1,Q2,Q3.分別討論各自的P點(diǎn),并求AP的值.
討論Q:如圖作輔助線,連接BQ1、CQ1,作PQ1⊥BQ1交AD于P,過點(diǎn)Q1,作EF⊥AD于E,交BC于F.
∵△BCQ1為等邊三角形,正方形ABCD邊長為1,
∴,.
在四邊形ABPQ1中,
∵∠ABQ1=30°,
∴∠APQ1=150°,
∴△PEQ1為含30°的直角三角形,
∴PE=.
∵AE=,
∴x=AP=AE-PE=2-.
②討論Q2,如圖作輔助線,連接BQ2,AQ2,過點(diǎn)Q2作PG⊥BQ2,交AD于P,連接BP,過點(diǎn)Q2作EF⊥CD于E,交AB于F.
∵EF垂直平分CD,
∴EF垂直平分AB,
∴AQ2=BQ2.
∵AB=BQ2,
∴△ABQ2為等邊三角形.
在四邊形ABQP中,
∵∠BAD=∠BQP=90°, ∠ABQ=60°,
∴∠APE=120°
∴∠EQ2G=∠DPG=180°-120°=60°,
∴,
∴EG=,
∴DG=DE+GE=-1,
∴PD=1-,
∴x=AP=1-PD=.
③對Q3,如圖作輔助線,連接BQ1,CQ1,BQ3,CQ3,過點(diǎn)Q3作BQ3⊥PQ3,交AD的延長線于P,連接BP,過點(diǎn)Q1,作EF⊥AD于E,此時(shí)Q3在EF上,不妨記Q3與F重合.
∵△BCQ1為等邊三角形,△BCQ3為等邊三角形,BC=1,
∴,,
∴.
在四邊形ABQ3P中
∵∠ABF=∠ABC+∠CBQ3=150°,
∴∠EPF=30°,
∴EP=,EF=.
∵AE=,
∴x=AP=AE+PE=+2.
綜上所述,△CDQ為等腰三角形時(shí)x的值為2﹣,,2+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會主義核心價(jià)值觀、未成年人基本文明禮儀規(guī)范”的知識競賽活動,成績分為A、B、C、D四個(gè)等級,并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級A為優(yōu)秀,求該班的優(yōu)秀率.
【答案】(1)60;(2)補(bǔ)圖見解析;(3)108°;(4)5%.
【解析】(1)用B等人數(shù)除以其所占的百分比即可得到總?cè)藬?shù);
(2)用求得的總?cè)藬?shù)乘以C等所占的百分比即可得到C等的人數(shù),總?cè)藬?shù)減去A、C等的人數(shù)即可求得D等的人數(shù);
(3)用D等的人數(shù)除以總?cè)藬?shù)乘以360°即可得到答案;
(4)用A等的人數(shù)除以總?cè)藬?shù)乘以100%即可得到答案. 解答:
解:(1)30÷50%=60(人)
∴八年級一共有60人。
(2)等級為“C”的人數(shù)為60×15%=9(人).
等級為“D”的人數(shù)為603309=18(人).
補(bǔ)全折線統(tǒng)計(jì)圖如下。
(3)等極為“D”的部分所占圓心角的度數(shù)為 ×360°=108°,
故答案為:108°.
(4)該班的優(yōu)秀率×100%=5%.
∴該班的優(yōu)秀率為5%.
點(diǎn)睛:本題考查統(tǒng)計(jì)相關(guān)知識.利用拆線圖與扇形圖得出相關(guān)信息是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
25
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0),B(3,0),C(0,3)三點(diǎn),直線L是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)設(shè)P點(diǎn)是直線L上的一個(gè)動點(diǎn),當(dāng)△PAC的周長最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華蒙上眼睛投飛鏢且中目標(biāo)(轉(zhuǎn)盤技等分成4個(gè)扇形,投在邊線上忽略)(直接填寫答案)
(1)擊中紅色區(qū)域的概率是 .
(2)擊中白色區(qū)域的概率是 .
(3)沒有擊中黃色區(qū)域的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價(jià)格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,)、B(2,-4)是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求方程的解(直接寫出答案)
(4)求不等式的解集(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),若∠BAC=∠CAM,過點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若直線l與AB的延長線相交于點(diǎn)E,⊙O的半徑為3,并且∠CAB=30°,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市市民2018年乘坐公交車的每人月均花費(fèi)情況,相關(guān)部門隨機(jī)調(diào)查了1000人的相關(guān)信息,并繪制了如圖所示的頻數(shù)直方圖,根據(jù)圖中提供的信息,有下列說法(每組值包括最低值,不包括最高值):①乘坐公交車的月均花費(fèi)在60元~80元的人數(shù)最多;②月均花費(fèi)在160元(含160元)以上的人數(shù)占所調(diào)查總?cè)藬?shù)的10%;③在所調(diào)查的1000人中,至少有一半以上的人的月均花費(fèi)超過75元;④為了讓市民享受更多的優(yōu)惠,相關(guān)部門擬確定一個(gè)折扣標(biāo)準(zhǔn),計(jì)劃使30%左右的人獲得優(yōu)惠,那么可以是乘坐公交車的月均花費(fèi)達(dá)到100元(含100元)以上的人享受折扣.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是∠內(nèi)的一點(diǎn),過點(diǎn)作于點(diǎn)于點(diǎn),且.
求證: ;
如圖②,點(diǎn)是射線上一點(diǎn),點(diǎn)是線段上一點(diǎn),且,若.求線段的長.
如圖③,若,將繞點(diǎn)以每秒的速度順時(shí)針旋轉(zhuǎn),秒后,開始繞點(diǎn)以每秒的速度順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后停止,此時(shí)也隨之停止旋轉(zhuǎn)。旋轉(zhuǎn)過程中,所在直線與所在直線的交點(diǎn)記為所在直線與所在直線的交點(diǎn)記為.問旋轉(zhuǎn)幾秒時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“和諧號”高鐵列車的小桌板收起時(shí),小桌板的支架底端與桌面頂端的距離OA=75厘米,且可以近似看作與地面垂直.展開小桌板使桌面保持水平,此時(shí)CB⊥AO,∠AOB=∠ACB=37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù), , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com