【題目】A、B、C 為數(shù)軸上三點,若點 C 到點 A 的距離是點 C 到點 B 的距離的 2倍,則稱點 C 是(A,B)的奇異點,例如圖 1 中,點 A 表示的數(shù)為﹣1,點B 表示的數(shù)為 2,表示 1 的點 C 到點 A 的距離為 2,到點 B 的距離為 1,則點C 是(A,B)的奇異點,但不是(B,A)的奇異點.
(1)在圖 1 中,直接說出點 D 是(A,B)還是(B,C)的奇異點;
(2)如圖 2,若數(shù)軸上 M、N 兩點表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點 K 在 M、N 兩點之間,請求出 K 點表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點 P 從點 B 出發(fā),向左運動.
①若點 P 到達點 A 停止,則當點 P 表示的數(shù)為多少時,P、A、B 中恰有一個點為其余兩點的奇異點?
②若點 P 到達點 A 后繼續(xù)向左運動,是否存在使得 P、A、B 中恰有一個點為其余兩點的奇異點的情況?若存在,請直接寫出此時 PB 的距離;若不存在,請說明理由.
(1)點D是(B,C)的奇異點,不是(A,B)的奇異點;(2)(M,N)的奇異點表示的數(shù)是2;(3)①點P表示的數(shù)是0或10或20時,P、A、B中恰有一個點為其余兩點的奇異點;②PB=120或180或90.
【解析】
(1)根據(jù)奇異點的定義和數(shù)軸上兩點間的距離,即可求出點D到點A的距離為1,到點B的距離為2,以及點D到點C的距離為1,就可以對點D做出判斷.
(2)設(shè)奇異點表示的數(shù)為x,根據(jù)奇異點的定義可得方程:x﹣(﹣2)=2(4﹣x).從而求得x值.
(3)①當P在A、B兩點之間時,P、A、B中恰有一個點為其余兩點的奇異點需分類討論,具體分四種情況討論:當點P是(A,B)的奇異點時、當點P是(B,A)的奇異點時、當點A是(B,P)的奇異點時、當點B是(A,P)的奇異點時,計算方法同(1).
②點P到達點A后繼續(xù)向左運動,是否存在使得P、A、B中恰有一個點為其余兩點的奇異點的情況方法同①分四種情況討論:當點P為(B,A)的奇異點時,PB=120;
當點A為(P,B)的奇異點時,PB=180;當點A為(B,P)的奇異點時,PB=90;
當點B為(P,A)的奇異點時,PB=120.
(1)在圖1中,點D到點A的距離為1,到點B的距離為2,
∴點D是(B,C)的奇異點,不是(A,B)的奇異點;
(2)設(shè)奇異點表示的數(shù)為x,
則由題意,得x﹣(﹣2)=2(4﹣x).
解得x=2.
∴(M,N)的奇異點表示的數(shù)是2;
(3)①設(shè)點P表示的數(shù)為y.
當點P是(A,B)的奇異點時,
則有y+20=2(40﹣y),
解得y=20.
當點P是(B,A)的奇異點時,
則有40﹣y=2(y+20),
解得y=0.
當點A是(B,P)的奇異點時,
則有40+20=2(y+20),
解得y=10.
當點B是(A,P)的奇異點時,
則有40+20=2(40﹣y),解得y=10.
∴當點P表示的數(shù)是0或10或20時,
P、A、B中恰有一個點為其余兩點的奇異點.
②當點P為(B,A)的奇異點時,PB=120;
當點A為(P,B)的奇異點時,PB=180;
當點A為(B,P)的奇異點時,PB=90;
當點B為(P,A)的奇異點時,PB=120.
科目:初中數(shù)學 來源: 題型:
【題目】暑期臨近,重慶市某中學校為了豐富學生的暑期文化生活,同時幫助孩子融洽親子關(guān)系,增進親子間的情感交流,計劃組織學生去某景區(qū)參加為期一周的“親子一家游”活動. 若報名參加此次活動的學生人數(shù)共有56人,其中要求參加的每名學生都至少需要一名家長陪同參加.
(1)假設(shè)參加此次活動的家長人數(shù)是參加學生人數(shù)的2倍少2人,為了此次活動學校專門為每名學生和家長購買一件T恤衫, 家長的T恤衫每購買8件贈送1件學生T恤衫(不足8件不贈送),學生T恤衫每件15元,學校購買服裝的費用不超過3401元,請問每件家長T恤衫的價格最高是多少元?
(2)已知該景區(qū)的成人票價每張100元,學生票價每張50元,為了支持此次活動,該景區(qū)特地推出如下優(yōu)惠活動:每張成人票價格下調(diào)a%,學生票價格下調(diào).a% 另外,經(jīng)統(tǒng)計此次參加活動的家長人數(shù)比學生人數(shù)多a%, 參加此次活動的購買票價總費用比未優(yōu)惠前減少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為D.
(1)求拋物線的解析式;
(2)一動點M從點D出發(fā),以每秒1個單位的速度沿拋物線的對稱軸向下運動,連OM,BM,設(shè)運動時間為t秒(t=0),在點M的運動過程中,當∠OMB=90°時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1的正方形,已知學校的坐標為A(2,2).
(1)請在圖中建立適當?shù)闹苯亲鴺讼,并寫出圖書館的坐標;
(2)若體育館的坐標為C(-2,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長;
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有30箱蘋果,以每箱20千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質(zhì)質(zhì)量的差 (單位:千克) | 1 | 2 | |||
箱數(shù) | 2 | 6 | 10 | 8 | 4 |
(1)這30箱蘋果中,最重的一箱比最輕的一箱重多少千克?
(2)與標準質(zhì)量比較,這30箱蘋果總計超過或不足多少千克?
(3)若蘋果每千克售價6元,則出售這30箱蘋果可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當△AEF周長最小時,∠CFE的大小是( 。
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C 為數(shù)軸上三點,若點 C 到點 A 的距離是點 C 到點 B 的距離的 2倍,則稱點 C 是(A,B)的奇異點,例如圖 1 中,點 A 表示的數(shù)為﹣1,點B 表示的數(shù)為 2,表示 1 的點 C 到點 A 的距離為 2,到點 B 的距離為 1,則點C 是(A,B)的奇異點,但不是(B,A)的奇異點.
(1)在圖 1 中,直接說出點 D 是(A,B)還是(B,C)的奇異點;
(2)如圖 2,若數(shù)軸上 M、N 兩點表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點 K 在 M、N 兩點之間,請求出 K 點表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點 P 從點 B 出發(fā),向左運動.
①若點 P 到達點 A 停止,則當點 P 表示的數(shù)為多少時,P、A、B 中恰有一個點為其余兩點的奇異點?
②若點 P 到達點 A 后繼續(xù)向左運動,是否存在使得 P、A、B 中恰有一個點為其余兩點的奇異點的情況?若存在,請直接寫出此時 PB 的距離;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com