【題目】如圖,正方形ABCD的邊長為2,點(diǎn)E、FBD上,且DF=BE=1,四邊形AECF的面積為______

【答案】4

【解析】

連結(jié)AC,交BD于點(diǎn)O,依據(jù)正方形的性質(zhì)可得到ACEF,然后再證明OE=OF,從而可得到四邊形AFCE為平行四邊形,于是可證明它是一個(gè)菱形;先求得BF的長,然后可得到OF的長,進(jìn)而可得到EF的長,依據(jù)依據(jù)菱形的面積等于兩對(duì)角線乘積的一半求解即可.

解:連結(jié)AC,交BD于點(diǎn)O

∵四邊形ABCD是正方形,

OA=OCOB=OD

又∵BE=DF,

BEBO=DFDOOE=OF,

∴四邊形AFCE是平行四邊形.

又∵ACEF,

∴四邊形AFCE是菱形.

AB=AD=2

∴由勾股定理可知AC=BD=4

DF=BE=1,

EF=2

∴菱形的面積=EFAC=×2×4=4

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.

(1)請(qǐng)直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷ABC的形狀,并說明理由;

(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫出此時(shí)點(diǎn)N的坐標(biāo);

(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NMAC,交AB于點(diǎn)M,當(dāng)AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生環(huán)保意識(shí),某中學(xué)組織全校2000名學(xué)生參加環(huán)保知識(shí)大賽,比賽成績均為整數(shù),從中抽取部分同學(xué)的成績進(jìn)行統(tǒng)計(jì),并繪制成如圖統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)若抽取的成績用扇形圖來描述,則表示第三組(79.5~89.5)”的扇形的圓心角為多少度;

(2)若成績?cè)?/span>90分以上(含90分)的同學(xué)可以獲獎(jiǎng),請(qǐng)估計(jì)該校約有多少名同學(xué)獲獎(jiǎng)?

(3)某班準(zhǔn)備從成績最好的4名同學(xué)(男、女各2名)中隨機(jī)選取2名同學(xué)去社區(qū)進(jìn)行環(huán)保宣傳,則選出的同學(xué)恰好是11女的概率為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中心廣場燈柱AB被鋼纜CD固定,已知CB=5米,且sin∠DCB

1)求鋼纜CD的長度。

2)若AD=2米,燈的頂端E距離A1.6米,且∠EAB=120°,則燈的頂端E距離地面多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校八年級(jí)(1)班學(xué)生利用寒假期間到郊區(qū)進(jìn)行社會(huì)實(shí)踐活動(dòng),活動(dòng)之余,同學(xué)們準(zhǔn)備攀登附近的一個(gè)小山坡,從B點(diǎn)出發(fā),沿坡腳15°的坡面以5千米/時(shí)的速度行至D點(diǎn),用了10分鐘,然后沿坡比為1:的坡面以3千米/時(shí)的速度達(dá)到山頂A點(diǎn),用了5分鐘,求小山坡的高(即AC的長度)(精確到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:

(1)將ABC沿x軸翻折后再沿x軸向右平移1個(gè)單位,在圖中畫出平移后的A1B1C1

(2)作ABC關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱的A2B2C2

(3)求B1的坐標(biāo) C2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=-x2-2x+3.

(1)將其配方成y=a(x-k)2+h的形式,并寫出它的開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo).

(2)在平面直角坐標(biāo)系中畫出函數(shù)的圖象,并觀察圖象,當(dāng)y≥0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在RtABC中,∠ACB90°,若點(diǎn)D是斜邊AB的中點(diǎn),則CDAB,運(yùn)用:如圖2,ABC中,∠BAC90°,AB2,AC3,點(diǎn)DBC的中點(diǎn),將ABD沿AD翻折得到AED連接BE,CEDE,則CE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)AB,直線l1,l2交于點(diǎn)C

1)求點(diǎn)D的坐標(biāo);

2)求直線l2的解析表達(dá)式;

3)求ADC的面積;

4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得ADPADC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案