【題目】函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的一元二次方程ax2+bx+c-3=0的根的情況是( )
A. 有兩個(gè)不相等的實(shí)數(shù)根
B. 有兩個(gè)異號(hào)的實(shí)數(shù)根
C. 有兩個(gè)相等的實(shí)數(shù)根
D. 沒(méi)有實(shí)數(shù)根
【答案】C
【解析】試題分析:由圖可知y=ax2+bx+c﹣3可以看作是函數(shù)y=ax2+bx+c的圖象向下平移3個(gè)單位而得到,再根據(jù)函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù)進(jìn)行解答.
解:∵函數(shù)y=ax2+bx+c的圖象頂點(diǎn)的縱坐標(biāo)為3,
∴函數(shù)y=ax2+bx+c﹣3的圖象可以看作是y=ax2+bx+c的圖象向下平移3個(gè)單位得到,此時(shí)頂點(diǎn)在x軸上,
∴函數(shù)y=ax2+bx+c﹣3的圖象與x軸只有1個(gè)交點(diǎn),
∴關(guān)于x的方程ax2+bx+c﹣3=0有兩個(gè)相等實(shí)數(shù)根.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為籌備一項(xiàng)慶典,利用現(xiàn)有的3490盆甲種花卉和2950盆乙種花卉搭配A,B兩種園藝造型共50個(gè)擺放在迎賓大道兩側(cè),已知搭配一個(gè)A種造型需甲種花卉80盆,乙種花卉40盆;搭配一個(gè)B種造型需甲種花卉50盆,乙種花卉90盆,且搭配一個(gè)A種造型的成本是200元,搭配一個(gè)B種造型的成本是300元,則有多少種搭配方案?這些方案中成本最低的是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(a為常數(shù))的圖象經(jīng)過(guò)點(diǎn)B(﹣4,2).
(1)求a的值;
(2)如圖,過(guò)點(diǎn)B作直線AB與函數(shù)y=的圖象交于點(diǎn)A,與x軸交于點(diǎn)C,且AB=3BC,過(guò)點(diǎn)A作直線AF⊥AB,交x軸于點(diǎn)F,求線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校規(guī)定學(xué)生的數(shù)學(xué)期評(píng)成績(jī)滿分為100分,其中段考成績(jī)占40%,期考成績(jī)占60%,小明的段考成績(jī)是80分,數(shù)學(xué)期評(píng)成績(jī)是86分,則小明的數(shù)學(xué)期末考試成績(jī)是分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“垂直于同一條直線的兩直線平行”,運(yùn)用這一性質(zhì)可以說(shuō)明鋪設(shè)鐵軌互相平行的道理.如圖所示,已知∠2是直角,再度量出∠1或∠3就會(huì)知道鐵軌平行不平行?
[解答]
方案一:若量得∠3=90°,結(jié)合∠2情況,說(shuō)明理由.
方案二:若量得∠1=90°,結(jié)合∠2情況,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)A(a,2)在第二象限,則點(diǎn)B(1,a)在( 。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a<b,則下列四個(gè)不等式中,不正確的是( )
A.a﹣2<b﹣2
B.﹣2a<﹣2b
C.2a<2b
D.a+2<b+2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com