【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,使∠BOC=120°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.

1)如圖2,將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使邊OM∠BOC的內(nèi)部,且OM恰好平分∠BOC.此時(shí)∠AOM=_______度;

2)如圖3,繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使得ON∠AOC的內(nèi)部.探究∠AOM∠NOC之間數(shù)量關(guān)系,并說(shuō)明你的理由;

3)將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,若直線(xiàn)ON恰好平分∠AOC,則此時(shí)三角板繞點(diǎn)O旋轉(zhuǎn)的時(shí)間是多少秒?

【答案】1120°;(2∠AOM-∠NOC=30°;(3624秒.

【解析】

1)先根據(jù)角平分線(xiàn)的定義求出∠BOM的度數(shù),繼而根據(jù)平角的定義進(jìn)行求解即可;

2)結(jié)論:∠AOM-NOC=30°,理由如下:根據(jù)平角定義先求出∠AOC的度數(shù),繼而根據(jù)角的和差得到90°-AOM=60°-NOC,由此求解即可;

3)設(shè)三角板繞點(diǎn)O旋轉(zhuǎn)的時(shí)間是x秒,分ON的反向延長(zhǎng)線(xiàn)OF平分∠AOCON的平分∠AOC兩種情況分別畫(huà)出圖形進(jìn)行解答即可.

1∵OM恰好平分∠BOC∠BOC=120°,

∴∠BOM=BOC=120°÷2=60°,

∴∠AOM=180°-60°=120°;

2)如圖,∠AOM-∠NOC=30°,理由如下:

∵∠BOC=120°,

∴∠AOC=180°-BOC=60°

∵∠AON=MON-∠AOM=90°-∠AOM,

∠AON=AOC-∠NOC=60°-∠NOC,

90°-AOM=60°-NOC,

∴∠AOM-∠NOC=30°;

3)設(shè)三角板繞點(diǎn)O旋轉(zhuǎn)的時(shí)間是x秒,

∵∠BOC=120°,

∴∠AOC=60°

如圖a,當(dāng)ON的反向延長(zhǎng)線(xiàn)OF平分∠AOC時(shí),∠AOF=AOC=30°,

∴∠BON=∠AOF=30°,

∠BOM=90°-∠BON=60°,

∴10x=60,

x=6;

如圖b,當(dāng)ON平分∠AOC時(shí),∠CON=AOC=30°,

∴ON旋轉(zhuǎn)的角度是90°+150°+30°=240°,

∴10x=240,

x=24

綜上,x=6x=24,

即此時(shí)三角板繞點(diǎn)O旋轉(zhuǎn)的時(shí)間是624秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重疊都分構(gòu)成的四邊形ABCD中,AB=3BD=4.則AC的長(zhǎng)為_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列有理數(shù):,-42.5,-1,0,3,,5

1)畫(huà)數(shù)軸,并在數(shù)軸上表示這些數(shù):

2)這些數(shù)中最小的數(shù)是________,指出這些數(shù)中互為相反數(shù)的兩個(gè)數(shù)之間所有的整數(shù)共有________個(gè)

3)計(jì)算出,-42.5,-10,3,5這些數(shù)的和的絕對(duì)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) CD是線(xiàn)段AB上兩點(diǎn)(不與端點(diǎn)A、B重合),點(diǎn)A、B、C、D四點(diǎn)組成的所有線(xiàn)段的長(zhǎng)度都是正整數(shù),且總和為29,則線(xiàn)段AB的長(zhǎng)度為__________________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=4,BC=12,點(diǎn)EBC的中點(diǎn).點(diǎn)P、Q分別是邊AD、BC上的兩點(diǎn),其中點(diǎn)P以每秒個(gè)1單位長(zhǎng)度的速度從點(diǎn)A運(yùn)動(dòng)到點(diǎn)D后再返回點(diǎn)A,同時(shí)點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)C出發(fā)向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間t_____秒時(shí),以點(diǎn)A、P,Q,E為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐘鼓樓AN上懸掛一條幅AB,謝高在坡面D處測(cè)得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向鐘鼓樓方向繼續(xù)行走10米來(lái)到C處,測(cè)得條幅的底部B的仰角為45°,此時(shí)謝高距鐘鼓樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且M、E、C、N在同一條直線(xiàn)上,求條幅的長(zhǎng)度(結(jié)果精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為⊙O的直徑, D、T是圓上的兩點(diǎn),且AT平分∠BAD,過(guò)點(diǎn)T作AD延長(zhǎng)線(xiàn)的垂線(xiàn)PQ,垂足為C.

(1)求證:PQ是⊙O的切線(xiàn);

(2)若⊙O的半徑為2,,求弦AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若PAB為直角三角形,則滿(mǎn)足條件的點(diǎn)P的個(gè)數(shù)為( ).

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BD是等邊ABC一邊上的高,延長(zhǎng)BCE,使CE=CD.

(1)試比較BDDE的大小關(guān)系,并說(shuō)明理由;

(2)若將BD改為ABC的角平分線(xiàn)或中線(xiàn),能否得出同樣的結(jié)論?

查看答案和解析>>

同步練習(xí)冊(cè)答案