【題目】下列四個命題:

①直徑是弦;

②經(jīng)過三個點可以確定一個圓;

③三角形的外心到三角形各頂點的距離都相等;

④三角形的外心是三條內(nèi)角平分線的交點.

其中正確的有( )

A. 4個 B. 3個 C. 2個 D. 1個

【答案】C

【解析】直徑是圓內(nèi)最長的弦,故①正確;

任意不在同一直線上的三個點確定一個圓,故②錯誤;

三角形的外心到三角形各頂點的距離都相等,故③正確;

三角形的內(nèi)心是三條內(nèi)角平分線的交點,故④錯誤。正確的兩個,故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=x2+bx+c,b+c=0,則它的圖象一定過點( )

A. (-1,-1) B. (1,-1) C. (-1,1) D. (1,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級同學到距學校6千米的郊外秋游,一部分同學步行,另一部分同學騎自行車,沿相同路線前往,如圖,L1L2分別表示步行和騎車的同學前往目的地所走的路程y(千米)與所用時間x(分鐘)之間的函數(shù)關系,則以下判斷錯誤的是( )

A. 騎車的同學比步行的同學晚出發(fā)30分鐘

B. 騎車的同學和步行的同學同時到達目的地

C. 騎車的同學從出發(fā)到追上步行的同學用了20分鐘

D. 步行的速度是6千米/小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(m+32+|n﹣2|=0,則﹣mn=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD,OACBD的交點,過點O的直線EFBA,DC的延長線分別交于點E,F.

(1)求證:AOE≌△COF.

(2)請連接EC,AF,EFAC滿足什么條件時,四邊形AECF是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于M,N.

(1如圖1,若點O與點A重合,則OM與ON的數(shù)量關系是__________________;

(2如圖2,若點O正方形的中心(即兩對角線的交點,則(1中的結論是否仍然成立?請說明理由;

(3如圖3,若點O在正方形的內(nèi)部(含邊界,當OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?

(4如圖4是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部移動所形成的圖形”提出一個正確的結論.(不必說理

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個多邊形的內(nèi)角和是1800°,那么這個多邊形的邊數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OAOB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長;

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ykxb上有兩點Ax1,y1)和點Bx2,y2),且(x1-x2)(y1-y2<0,則常數(shù)k的取值范圍是_______________

查看答案和解析>>

同步練習冊答案