如圖,已知AD∥BC一點E為CD上一點,AE、BE分別平分∠DAB、∠CBA,BE交AD的延長線于點F.
(1)求證:△ABE≌△AFE;
(2)求證:AD+BC=AB.

(1)證明:如圖,∵AE、BE分別平分∠DAB、∠CBA,
∴∠1=∠2,∠3=∠4,
∵AD∥BC,
∴∠2=∠F,∠1=∠F,
在△ABE和△AFE中,
,
∴△ABE≌△AFE(AAS);

(2)證明:∵△ABE≌△AFE,
∴BE=EF,
在△BCE和△FDE中,
,
∴△BCE≌△FDE(ASA),
∴BC=DF,
∴AD+BC=AD+DF=AF=AB,
即AD+BC=AB.
分析:(1)根據(jù)角平分線的定義可得∠1=∠2,∠3=∠4,再根據(jù)兩直線平行,內錯角相等可得∠2=∠F,然后求出∠1=∠F,再利用“角角邊”證明△ABE和△AFE全等即可;
(2)根據(jù)全等三角形對應邊相等可得BE=FE,然后利用“角邊角”證明△BCE和△FDE全等,根據(jù)全等三角形對應邊相等可得BC=DF,然后根據(jù)AD+BC整理即可得證.
點評:本題考查了全等三角形的判定與性質,平行線的性質,熟練掌握三角形全等的判定方法是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD=BC.EC⊥AB.DF⊥AB,C.D為垂足,要使△AFD≌△BEC,還需添加一個條件.若以“ASA”為依據(jù),則添加的條件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD=BC,AC=BD,∠DAC與∠CBD有什么關系?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD∥BC,AD平分∠CAE,試說明△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠C=
56°
56°

查看答案和解析>>

同步練習冊答案