【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)E為AH的中點(diǎn),點(diǎn)F為GH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
【答案】C
【解析】如圖,取AD的中點(diǎn)M,連接CM、AG、AC,作AN⊥BC于N.
∵四邊形ABCD是平行四邊形,∠BCD=120°,
∴∠D=180°-∠BCD=60°,AB=CD=2,
∵AM=DM=DC=2,
∴△CDM是等邊三角形,
∴∠DMC=∠MCD=60°,AM=MC,
∴∠MAC=∠MCA=30°,
∴∠ACD=90°,
∴AC=2,
在Rt△ACN中,∵AC=2,∠ACN=∠DAC=30°,
∴AN=AC=,
∵AE=EH,GF=FH,
∴EF=AG,
易知AG的最大值為AC的長,最小值為AN的長,
∴AG的最大值為2,最小值為,
∴EF的最大值為,最小值為,
∴EF的最大值與最小值的差為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬元) | 2 |
種植樹木利潤y1(萬元) | 4 |
種植花卉利潤y2(萬元) | 2 |
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一張長方形紙條上畫一條數(shù)軸.
(1)折疊紙條使數(shù)軸上表示的點(diǎn)與表示5的點(diǎn)重合,折痕與數(shù)軸的交點(diǎn)表示的數(shù)是 ;
(2)如果數(shù)軸上兩點(diǎn)之間的距離為8,經(jīng)過(1)的折疊方式能夠重合,那么左邊這個(gè)點(diǎn)表示的數(shù)是 ;
(3)如圖2,點(diǎn)A、B表示的數(shù)分別是、,數(shù)軸上有點(diǎn)C,使得AC=2BC,那么點(diǎn)C表示的數(shù)是 ;
(4)如圖2,若將此紙條沿A、B兩處剪開,將中間的一段紙條對(duì)折,使其左右兩端重合,這樣連續(xù)對(duì)折次后,再將其展開,求最左端的折痕與數(shù)軸的交點(diǎn)表示的數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=90°,且AD=9cm,AB=4cm,延長BC到點(diǎn)E,使CE=3cm,連接DE.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2cm的速度沿線段AD運(yùn)動(dòng);動(dòng)點(diǎn)Q從E點(diǎn)出發(fā)以每秒3cm的速度沿EB向B點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P、Q有一個(gè)到位置時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,回答下列問題:
(1)求DE的長
(2)當(dāng)t為多少時(shí),四邊形PQED成為平行四邊形;
(3)請(qǐng)直接寫出使得△DQE是等腰三角形時(shí)t的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=( )
A.
B.
C.
D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫出點(diǎn)A、B的坐標(biāo):
(2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(,)、B′(,)、C′(,).
(3)△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為5的正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A,C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AG交于點(diǎn)P.
(1)求證:CE=EP.
(2)若點(diǎn)E的坐標(biāo)為(3,0),在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com