【題目】解方程

(1)(x2)2=9.

(2)3x21=2x.

(3)x2+4x+1=0.

(4)(x+1)26(x+1)+5=0

【答案】(1)x1=5,x2=-1;(2)x1=1,x2=-;(3)x1=-2+,x2=-2-;(4)x1=4,x2=0.

【解析】

1)用直接開平方求解較簡便;
2)用因式分解法求解較簡便;
3)用公式法(或配方法)比較簡便;
4)把x+1看成一個整體,用因式分解法比較簡便.

解:(1,

2)移項,得3x2-2x-1=0
∴(3x+1)(x-1=0,
3x+1=0x-1=0
x1=-,x2=1
3)∵△=16-4=12,

4)(x+1-5)(x+1-1=0
即(x-4x=0,
x1=4,x2=0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC的中點為O,點G,H在對角線AC上,AGCH,直線GH繞點O逆時針旋轉(zhuǎn)α角,與邊AB、CD分別相交于點E、F(點E不與點A、B重合).

1)求證:四邊形EHFG是平行四邊形;

2)若∠α90°,AB9AD3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,已知,,點的延長線上,點的延長線上,有下列結(jié)論:①;②;③;④若,則點的距離為.則其中正確結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)和反比例函數(shù)

1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點

①求,的值;

②直接寫出當的范圍;

2)如圖2,過點軸的平行線與函數(shù)的圖象相交于點,與反比例函數(shù)的圖象相交于點

①若,直線與函數(shù)的圖象相交點.當點、中的一點到另外兩點的距離相等時,求的值;

②過點軸的平行線與函數(shù)的圖象相交于點.當的值取不大于1的任意實數(shù)時,點、間的距離與點、間的距離之和始終是一個定值.求此時的值及定值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】車輛轉(zhuǎn)彎時,能否順利通過直角彎道的標準是:車輛是否可以行使到和路的邊界夾角是45°的位置(如圖1中②的位置),例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CDDE、CE的夾角都是45°時,連接EF,交CD于點G,若GF的長度至少能達到車身寬度,則車輛就能通過.

(1)試說明長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎;

(2)為了能使長8m,寬3m的消防車通過該彎道,可以將轉(zhuǎn)彎處改為圓弧(分別是以O為圓心,以OMON為半徑的弧),具體方案如圖3,其中OMOM′,請你求出ON的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形 ABCD 中,對角線 AC、BD 相交于點 O,過點 O 的兩條直線分別交邊 AB、CD、AD、BC 于點 E、F、G、H.

(感知)如圖,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG S 正方形 ABCD

(拓展如圖②,若四邊形 ABCD 是矩形 S 四邊形 AEOGS 矩形 ABCD, AB=a, AD=b,BE=m, AG 的長用含 a、b、m 的代數(shù)式表示);

(探究)如圖,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac0;②當x﹣1時,yx增大而減。虎a+b+c0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m2; 3a+c0.其中正確結(jié)論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點坐標為,經(jīng)過點.

1)求拋物線的解析式;

2)如圖1,直線交拋物線,兩點,若,求的值;

3)如圖2,將拋物線向下平移個單位長度得到拋物線,拋物線的頂點為,交軸的負半軸于點,點在拋物線上.

①求點的坐標(用含的式子表示);

②若,求,的值.

查看答案和解析>>

同步練習冊答案