【題目】如圖,在矩形ABCD中,對角線AC的中點為O,點G,H在對角線AC上,AG=CH,直線GH繞點O逆時針旋轉(zhuǎn)α角,與邊AB、CD分別相交于點E、F(點E不與點A、B重合).
(1)求證:四邊形EHFG是平行四邊形;
(2)若∠α=90°,AB=9,AD=3,求AE的長.
【答案】(1)詳見解析;(2)AE=5.
【解析】
(1)由“ASA”可證△COF≌△AOE,可得EO=FO,且GO=HO,可證四邊形EHFG是平行四邊形;
(2)由題意可得EF垂直平分AC,可得AE=CE,由勾股定理可求AE的長.
證明:(1)∵對角線AC的中點為O
∴AO=CO,且AG=CH
∴GO=HO
∵四邊形ABCD是矩形
∴AD=BC,CD=AB,CD∥AB
∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA
∴△COF≌△AOE(ASA)
∴FO=EO,且GO=HO
∴四邊形EHFG是平行四邊形;
(2)如圖,連接CE
∵∠α=90°,
∴EF⊥AC,且AO=CO
∴EF是AC的垂直平分線,
∴AE=CE,
在Rt△BCE中,CE2=BC2+BE2,
∴AE2=(9﹣AE)2+9,
∴AE=5
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.
(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;
(2)若該經(jīng)銷商一次購進(jìn)兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進(jìn)貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設(shè)計一種進(jìn)貨方案使銷售總利潤最大,并求出總利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形(長方形)沿折疊,使點與點重合,點落在處,連接,,則下列結(jié)論:①,②,③,④,,三點在同一直線上,其中正確的是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AC、BD相交于點O,AE平分∠BAD,交BC于E,若∠EAO=15°,則∠BOE的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分9分)如圖,以⊿ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點分別為D,E,且.
(1)試判斷⊿ABC的形狀,并說明理由;
(2)已知半圓的半徑為5,BC=12,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮想趁暑假去看世博會,可是只有一張門票,誰都想去,最后商定通過轉(zhuǎn)盤游戲來決定.他們準(zhǔn)備了如圖所示兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標(biāo)上數(shù)字,游戲規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為時,小明去:數(shù)字之和為時,小亮去.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止)
用樹狀圖或列表法求小明去的概率;
這個游戲規(guī)則對小明、小亮雙方公平嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當(dāng)點P運(yùn)動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com