(2004•武漢)已知:二次函數(shù)y=ax2-(b-1)x-3a的圖象經(jīng)過點P(4,10),交x軸于A(x1,0)、B(x2,0)兩點(x1<x2),交y軸負半軸于C點,且滿足3OA=OB.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)的圖象上是否存在點M,使銳角∠MCO>∠ACO?若存在,請你求出M點的橫坐標的取值范圍;若不存在,請你說明理由.
【答案】分析:(1)根據(jù)韋達定理和3OA=OB可得出一個關于a、b的等量關系式,將P點坐標代入拋物線中可得出另一個a、b的關系式,聯(lián)立兩個式子即可求出待定系數(shù)的值,也就得出了拋物線的解析式;
(2)如圖,取A點關于y軸的對稱點,那么∠A′CO=∠ACO,如果設直線A′C與拋物線的交點為N點話,那么如果使∠MCO>∠A′CO,那么必須滿足的條件為M的橫坐標在A的橫坐標與N的橫坐標之間,據(jù)此可求出M橫坐標的取值范圍(M的橫坐標不能為0,否則構(gòu)不成銳角∠MCO).
解答:解:(1)∵P(4,10)在圖象上,
∴16a-4(b-1)-3a=10①;
∵圖象交y軸負半軸于C,
∴-3a<0,
∴a>0,x1x2==-3<0,
∴x1<0,x2>0,x2=-3x1
x1+x2=x1+(-3x1)=-2x1=-,x1x2=-3x12=-3,
∴x12=1,又x1<0,
∴x1=-1,
∴x2=3,
∴b-1=2a②,
聯(lián)立①②解得:a=2,b=5,
∴y=2x2-4x-6;

(2)存在點M,使∠MCO>∠ACO,A點關于y軸對稱點A′(1,0),
設直線A′C為y=kx+b,由于直線A′C過(1,0),(0,-6),則有:
,
解得
∴y=6x-6,聯(lián)立拋物線的解析式有:

解得,
即直線A′C與拋物線交點為(0,-6),(5,24),
當y=-6時,即2x2-4x-6=-6,
解得:x1=0,x2=2,
∵∠MCO是銳角,
∴符合題意的x的取值范圍是-1<x<0或2<x<5.
點評:本題主要考查了二次函數(shù)解析式的確定、韋達定理的應用、軸對稱圖形、函數(shù)圖象交點等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:填空題

(2004•武漢)已知二次函數(shù)的圖象開口向下,且與y軸的正半軸相交.請你寫出一個滿足條件的二次函數(shù)的解析式:   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省武漢市中考數(shù)學試卷(解析版) 題型:解答題

(2004•武漢)已知:二次函數(shù)y=ax2-(b-1)x-3a的圖象經(jīng)過點P(4,10),交x軸于A(x1,0)、B(x2,0)兩點(x1<x2),交y軸負半軸于C點,且滿足3OA=OB.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)的圖象上是否存在點M,使銳角∠MCO>∠ACO?若存在,請你求出M點的橫坐標的取值范圍;若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省武漢市中考數(shù)學試卷(解析版) 題型:填空題

(2004•武漢)已知二次函數(shù)的圖象開口向下,且與y軸的正半軸相交.請你寫出一個滿足條件的二次函數(shù)的解析式:   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年天津市河西區(qū)九年級結(jié)課質(zhì)量調(diào)查數(shù)學試卷(解析版) 題型:選擇題

(2004•武漢)已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點的切線PD與直線AB交于P點,則∠ADP的度數(shù)為( )

A.40°
B.45°
C.50°
D.65°

查看答案和解析>>

同步練習冊答案