【題目】已知函數(shù)yx2+bx+c經(jīng)過(1,3),(4,0

1)求該拋物線的解析式;(2)求當(dāng)函數(shù)值y0時(shí)自變量x的范圍.

【答案】1yx26x+8;(2x2x4

【解析】

1)把點(diǎn)(1,3),(4,0)代入函數(shù)yx2bxc得出方程組,解方程組求出bc的值即可;

2)求出y0時(shí)x的值,即可得出函數(shù)值y0時(shí)自變量x的范圍.

解:(1)∵函數(shù)yx2+bx+c經(jīng)過(13),(40

,

解得:

∴拋物線的解析式為yx26x+8;

2)當(dāng)y0時(shí),x26x+80

解得:x2x4,

即拋物線與x軸的交點(diǎn)為(2,0)、(4,0),

∵拋物線的開口向上,

∴當(dāng)函數(shù)值y0時(shí)自變量x的范圍為x2x4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOBO為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點(diǎn)A、BC

(1)求拋物線的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1和如圖2分別是表示甲、乙兩所學(xué)校男、女生比例的統(tǒng)計(jì)圖,請判斷下列說法是否正確,并說明理由.

(1)甲校的女生人數(shù)比男生人數(shù)多.

(2)乙校的男、女生人數(shù)一樣多.

(3)甲校女生人數(shù)比乙校女生人數(shù)多.

(4)不能比較兩個學(xué)校女生人數(shù)的多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC,∠ABC45°,ADBCDBEACE,交ADF

1)求證:△BDF≌△ADC

2)若BD4,DC3,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Aty1),Bt+2,y2)在拋物線的圖象上,且﹣2t2,則線段AB長的最大值、最小值分別是( 。

A. 22B. 2,2C. 22D. 2,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測試成績達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學(xué)生體質(zhì)健康狀況,從該校九年級學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測試,測試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。

各等級學(xué)生平均分統(tǒng)計(jì)表

等級

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖

1)扇形統(tǒng)計(jì)圖中不及格所占的百分比是  ;

2)計(jì)算所抽取的學(xué)生的測試成績的平均分;

3)若所抽取的學(xué)生中所有不及格等級學(xué)生的總分恰好等于某一個良好等級學(xué)生的分?jǐn)?shù),請估計(jì)該九年級學(xué)生中約有多少人達(dá)到優(yōu)秀等級。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市連續(xù)5天的天氣情況.

1)利用方差判斷該市這5天的日最高氣溫波動大還是日最低氣溫波動大;

2)根據(jù)如圖提供的信息,請?jiān)賹懗鰞蓚不同類型的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖1,拋物線yx2+x+3x軸交于C、F兩點(diǎn)(點(diǎn)C在點(diǎn)F左邊),與y軸交于點(diǎn)D,AD2,點(diǎn)B坐標(biāo)為(﹣4,5),點(diǎn)EAB上一點(diǎn),且BEED,連接CDCB,CE

1)求點(diǎn)CD、E的坐標(biāo);

2)如圖2,延長EDx軸于點(diǎn)M,請判斷△CEM的形狀,并說明理由;

3)在圖2的基礎(chǔ)上,將△CEM沿著CE翻折,使點(diǎn)M落在點(diǎn)M'處,請判斷點(diǎn)M'是否在此拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)、是實(shí)數(shù)).

⑴甲求得當(dāng)時(shí),;當(dāng)時(shí),,乙求得當(dāng)時(shí),.若甲求得的結(jié)果都正確,你認(rèn)為乙求得的結(jié)果正確嗎?說明理由;

⑵寫出二次函數(shù)的對稱軸,并求出該函數(shù)的最小值(用含、的代數(shù)式表示);

⑶已知二次函數(shù)的圖像經(jīng)過,兩點(diǎn)(mn是實(shí)數(shù)),當(dāng)時(shí),求證:.

查看答案和解析>>

同步練習(xí)冊答案