已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一點O為圓心的⊙O與BC相切于點C,與AC相交于點D.
(1)如圖1,若⊙O與AB相切于點E,求⊙O的半徑;
(2)如圖2,若⊙O在AB邊上截得的弦FG=數(shù)學公式,求⊙O的半徑.

解:(1)連接OE,因為⊙O與AB相切于點E,所以OE⊥AB,
設OE=x,則CO=x,AO=4-x,
∵⊙O與AB相切于點E,
∴∠AEO=90°,
∵∠A=∠A,∠AEO=∠ACB=90°,
∴Rt△AOE∽Rt△ABC,

,
解得:x=
∴⊙O的半徑為
(2)過點O作OH⊥AB,垂足為點H,則H為FG的中點,F(xiàn)H=FG=

連接OF,設OF=x,則OA=4-x,
由Rt△AOH∽Rt△ABC可得OH=,
在Rt△OHF中,據(jù)勾股定理得:OF2=FH2+OH2,
∴x2=(2+(2
解得x1=,x2=(舍去),
∴⊙O的半徑為
分析:(1)由于AB和圓相切,所以連接OE,利用相似即可求出OE.
(2)已知弦長,求半徑,要做弦的弦心距,構造直角三角形,利用勾股定理求出未知量.
點評:本題綜合考查了切線的性質(zhì),相似三角形,解直角三角形等知識點的運用.是一道運用切線性質(zhì)解題的典型題目,難度中等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知在Rt△ABC中,∠C=90°,∠A=α,AB=m,那么邊AB上的高為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC、BC為直徑作半圓,面積分別記為S1、S2,則S1+S2等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在Rt△ABC中,∠BAC=90°,AB=AC,M是AC的中點,AD⊥BM于E,交BC于D點.
(1)求證:BD=2CD;
(2)若AM=
1n
AC,其他條件不變,猜想BD與CD的倍數(shù)關系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知在Rt△ABC中,∠C=90°,sinA
2
2
,則tanB的值為(  )
A、1
B、
3
2
C、
2
2
D、
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知在Rt△ABC中,∠C=90°,AC=4,BC=3,在直線AC上找點P,使△ABP是等腰三角形,則AP的長度為
5、8、
25
8
5、8、
25
8

查看答案和解析>>

同步練習冊答案