如圖:已知在Rt△ABC中,∠C=90°,AC=4,BC=3,在直線AC上找點P,使△ABP是等腰三角形,則AP的長度為
5、8、
25
8
5、8、
25
8
分析:先根據(jù)勾股定理求出AB的長,再根據(jù)AB=AP4,AB=BP3,AB=AP1,AP2=BP2四中情況進行解答.
解答:解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB=5,
當AB=AP4時,AB=AP4=5;
當AB=BP3時,AP3=4+4=8;
當AB=AP1時,AB=AP1=5;
當AP2=BP2時,AP2=
25
8

故答案為:5、8、
25
8
點評:本題考查的是等腰三角形的判定,利用分類討論得出結論是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,則tanA的值為(  )
A、2
B、
1
2
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•驛城區(qū)模擬)如圖,已知在Rt△ABC中,∠B=90°,D、E分別是邊AB、AC的中點,若DE=4,AC=10,則AB的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在Rt△ABC中,∠C=90°,內(nèi)切圓的半徑為3cm,外接圓的半徑為12.5cm,求△ABC的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在Rt△ABC中,∠C=90°,點D在BC上,AD=BD,sin∠ADC=
45
,AC=4,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在Rt△ABC中,∠C=90°.根據(jù)要求用尺規(guī)作圖:
(1)作斜邊AB的垂直平分線PQ,垂足為Q;
(2)作∠B的角平分線BM.

查看答案和解析>>

同步練習冊答案