在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,等邊三角形OAB的一個頂點為A(2,0),另一個頂點B在第一象限內(nèi)。

(1)求經(jīng)過O、AB三點的拋物線的解析式;

(2)如果一個四邊形是以它的一條對角線為對稱軸的軸對稱圖形,那么我們稱這樣的四邊形為“箏形”。點Q在(1)的拋物線上,且以O、AB、Q為頂點的四邊形是“箏形,求點Q的坐標(biāo);

(3)設(shè)△OAB的外接圓⊙M,試判斷(2)中的點Q與⊙M的位置關(guān)系,并通過計算說明理由。

解:過BBCx軸于C.

∵ 等邊三角形的一個頂點為,

OB=OA=2,AC=OC=1,∠BOC=60°.

BC=.

B       ……………..1分

設(shè)經(jīng)過OA、B三點的拋物線的

解析式為:.

A(2,0)代入得:,

解得.

∴經(jīng)過OA、B三點的拋物線的解析式為

.

.   …………………..2分

(2)依題意分為三種情況:

(ⅰ) 當(dāng)以OA、OB為邊時,

OA=OB,

∴ 過OOQAB交拋物線于Q.

則四邊形OAQB是箏形,且∠QOA=30°.

     QD軸于D,QD=OD,

設(shè)Q,則.

解得:.

Q.                           …………..2分

(ⅱ) 當(dāng)以OA、AB為邊時,由對稱性可知Q   …………..1分

(ⅲ) 當(dāng)以OB、AB為邊時,拋物線上不存在這樣的點Q使BOQA為箏形.……..1分

Q.

(3)點Q內(nèi).

由等邊三角形性質(zhì)可知的外接圓圓心是(2)中BCOQ的交點,

當(dāng)Q時,

MCQD,

∴△OMC∽△OQD.

.

.

.

=.

,

<,

Q在⊙M內(nèi).                               ……………..2分

當(dāng)Q時,由對稱性可知點Q在⊙M內(nèi).

綜述,點Q在⊙M內(nèi).                                 ……………..1分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標(biāo);
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案