【題目】某中學(xué)全校學(xué)生參加了“交通法規(guī)”知識競賽,為了解全校學(xué)生競賽成績的情況,隨機(jī)抽取了一部分學(xué)生的成績,分成四組:A;B;CD,并繪制出如下不完整的統(tǒng)計圖.

1)求被抽取的學(xué)生成績在C組的有多少人;

2)所抽取學(xué)生成績的中位數(shù)落在哪個組內(nèi);

3)若該學(xué)校有名學(xué)生,估計這次競賽成績在A組的學(xué)生有多少人.

【答案】124人;(2C組;(3150人.

【解析】

1)根據(jù)扇形統(tǒng)計圖的B組所占比例,條形統(tǒng)計圖得B在人數(shù),用總?cè)藬?shù)減去ABD人數(shù),可得C組人數(shù);

2)根據(jù)總?cè)藬?shù)多少,結(jié)合中位數(shù)的概念確定即可;

3)根據(jù)樣本中A組所占比例,用總?cè)藬?shù)乘以比例,即可得到答案.

1)由圖可知:B組人數(shù)為12;B組所占的百分比為20%,

∴本次抽取的總?cè)藬?shù)為:(人),

∴抽取的學(xué)生成績在C組的人數(shù)為:(人);

(2)∵總?cè)藬?shù)為60人,

∴中位數(shù)為第30,31個人成績的平均數(shù),

,且

∴中位數(shù)落在C組;

(3)本次調(diào)查中競賽成績在A組的學(xué)生的頻率為:,

故該學(xué)校有名學(xué)生中競賽成績在A組的學(xué)生人數(shù)有:(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點E□ABCD對角線AC上的一點,點F在線段BE的延長線上,且EF=BE,線段EF與邊CD相交于點G

1)求證:DF//AC;

2)如果AB=BE,DG=CG,聯(lián)結(jié)DE、CF,求證:四邊形DECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+ax軸、y軸分別交于點D、C兩點和反比例函數(shù)交于AB兩點,且點A的坐標(biāo)是(1,3),點B的坐標(biāo)是(3,m)

1)求ak,m的值;

2)求C、D兩點的坐標(biāo),并求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凈揚水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的小型水凈化產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進(jìn)行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種水凈化產(chǎn)品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)

1)請求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;

2)求出第一年這種水凈化產(chǎn)品的年利潤z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值;

3)假設(shè)公司的這種水凈化產(chǎn)品第一年恰好按年利潤z(萬元)取得最大值時進(jìn)行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價格x(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結(jié)合年利潤z(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,平分平分,相交于點,且,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于兩點,與軸相交于點,,,直線是拋物線的對稱軸,在直線右側(cè)的拋物線上有一動點,連接,,,

1)求拋物線的函數(shù)表達(dá)式;

2)若點軸的下方,當(dāng)的面積是時,求的面積;

3)在(2)的條件下,點軸上一點,點是拋物線上一動點,是否存在點,使得以點,,為頂點,以為一邊的四邊形是平行四邊形,若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送.若兩車合作,各運12趟才能完成,需支付運費共4800元;若甲、乙兩車單獨運完此堆垃圾,則乙車所運趟數(shù)是甲車的2倍;已知乙車每趟運費比甲車少200元.

探究:

1)分別求出甲、乙兩車每趟的運費;

2)若單獨租用甲車運完此堆垃圾,需運多少趟;

發(fā)現(xiàn):若同時租用甲、乙兩車,則甲車運x趟,乙車運y趟,才能運完此堆垃圾,其中均為正整數(shù).

1)當(dāng)時,______;當(dāng)時,______;

2)求yx之間滿足的函數(shù)關(guān)系式.

決策:在“發(fā)現(xiàn)”的條件下,設(shè)總運費為w(元).

1)求wx之間滿足的函數(shù)關(guān)系式,當(dāng)x取何值時,w取得最小值;

2)當(dāng)時,甲車每趟的運費打7折,乙車每趟的運費打9折,當(dāng)x取何值時,w取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨州市新水一橋(如圖1)設(shè)計靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計長度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.

(1)求最短的斜拉索DE的長;

(2)求最長的斜拉索AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春天來了,石頭城邊,秦淮河畔,鳥語花香,柳條飄逸.為給市民提供更好的休閑鍛煉環(huán)境,決定對一段總長為1800米的外秦淮河沿河步行道出新改造,該任務(wù)由甲、乙兩工程隊先后接力完成.甲工程隊每天改造12米,乙工程隊每天改造8米,共用時200天.

(1)根據(jù)題意,小莉、小剛兩名同學(xué)分別列出尚不完整的方程組如下:

小莉: 小剛:

根據(jù)兩名同學(xué)所列的方程組,請你分別指出未知數(shù)x、y表示的意義,然后在方框中補(bǔ)全小莉、小剛兩名同學(xué)所列的方程組:

小莉:x表示 ,y表示

小剛:x表示 ,y表示

(2)求甲、乙兩工程隊分別出新改造步行道多少米.

查看答案和解析>>

同步練習(xí)冊答案